Suppr超能文献

单细胞 RNA-Seq 的有效聚类后差异分析。

Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq.

机构信息

Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell Syst. 2019 Oct 23;9(4):383-392.e6. doi: 10.1016/j.cels.2019.07.012. Epub 2019 Sep 11.

Abstract

Single-cell computational pipelines involve two critical steps: organizing cells (clustering) and identifying the markers driving this organization (differential expression analysis). State-of-the-art pipelines perform differential analysis after clustering on the same dataset. We observe that because clustering "forces" separation, reusing the same dataset generates artificially low p values and hence false discoveries. We introduce a valid post-clustering differential analysis framework, which corrects for this problem. We provide software at https://github.com/jessemzhang/tn_test.

摘要

单细胞计算管道包含两个关键步骤

组织细胞(聚类)和识别驱动这种组织的标记(差异表达分析)。最先进的管道在同一数据集上进行聚类后执行差异分析。我们观察到,由于聚类“强制”分离,因此重新使用相同的数据集生成人为的低 p 值和错误发现。我们引入了一个有效的聚类后差异分析框架,该框架纠正了这个问题。我们在 https://github.com/jessemzhang/tn_test 上提供了软件。

相似文献

1
Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq.
Cell Syst. 2019 Oct 23;9(4):383-392.e6. doi: 10.1016/j.cels.2019.07.012. Epub 2019 Sep 11.
2
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data.
Genome Biol. 2017 Mar 28;18(1):59. doi: 10.1186/s13059-017-1188-0.
3
An interpretable framework for clustering single-cell RNA-Seq datasets.
BMC Bioinformatics. 2018 Mar 9;19(1):93. doi: 10.1186/s12859-018-2092-7.
4
Computational Analysis of Single-Cell RNA-Seq Data.
Methods Mol Biol. 2021;2284:289-301. doi: 10.1007/978-1-0716-1307-8_16.
5
SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data.
Genomics Proteomics Bioinformatics. 2019 Apr;17(2):201-210. doi: 10.1016/j.gpb.2018.10.003. Epub 2019 Jun 13.
6
FlowGrid enables fast clustering of very large single-cell RNA-seq data.
Bioinformatics. 2021 Dec 22;38(1):282-283. doi: 10.1093/bioinformatics/btab521.
7
SCMarker: Ab initio marker selection for single cell transcriptome profiling.
PLoS Comput Biol. 2019 Oct 28;15(10):e1007445. doi: 10.1371/journal.pcbi.1007445. eCollection 2019 Oct.
8
Critical downstream analysis steps for single-cell RNA sequencing data.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab105.
9
A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
PLoS Comput Biol. 2018 Apr 9;14(4):e1006053. doi: 10.1371/journal.pcbi.1006053. eCollection 2018 Apr.
10
Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
Bioinformatics. 2017 Mar 1;33(5):767-769. doi: 10.1093/bioinformatics/btw732.

引用本文的文献

2
A single-cell and tissue-scale analysis suite resolves Mixl1's role in heart development.
iScience. 2025 Apr 10;28(5):112397. doi: 10.1016/j.isci.2025.112397. eCollection 2025 May 16.
3
Artificial variables help to avoid over-clustering in single-cell RNA sequencing.
Am J Hum Genet. 2025 Apr 3;112(4):940-951. doi: 10.1016/j.ajhg.2025.02.014. Epub 2025 Mar 12.
5
Protocol for directly selecting cell type marker genes for single-cell clustering analyses by Festem.
STAR Protoc. 2025 Mar 21;6(1):103514. doi: 10.1016/j.xpro.2024.103514. Epub 2024 Dec 18.
8
Are We There Yet? Assessing the Readiness of Single-Cell Proteomics to Answer Biological Hypotheses.
J Proteome Res. 2025 Apr 4;24(4):1482-1492. doi: 10.1021/acs.jproteome.4c00091. Epub 2024 Jul 9.
9
Directly selecting cell-type marker genes for single-cell clustering analyses.
Cell Rep Methods. 2024 Jul 15;4(7):100810. doi: 10.1016/j.crmeth.2024.100810. Epub 2024 Jul 8.

本文引用的文献

1
Integrating single-cell transcriptomic data across different conditions, technologies, and species.
Nat Biotechnol. 2018 Jun;36(5):411-420. doi: 10.1038/nbt.4096. Epub 2018 Apr 2.
2
An interpretable framework for clustering single-cell RNA-Seq datasets.
BMC Bioinformatics. 2018 Mar 9;19(1):93. doi: 10.1186/s12859-018-2092-7.
3
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018 Feb 6;19(1):15. doi: 10.1186/s13059-017-1382-0.
4
Massively parallel single-nucleus RNA-seq with DroNc-seq.
Nat Methods. 2017 Oct;14(10):955-958. doi: 10.1038/nmeth.4407. Epub 2017 Aug 28.
5
Assembly of functionally integrated human forebrain spheroids.
Nature. 2017 May 4;545(7652):54-59. doi: 10.1038/nature22330. Epub 2017 Apr 26.
6
Single-cell mRNA quantification and differential analysis with Census.
Nat Methods. 2017 Mar;14(3):309-315. doi: 10.1038/nmeth.4150. Epub 2017 Jan 23.
7
Massively parallel digital transcriptional profiling of single cells.
Nat Commun. 2017 Jan 16;8:14049. doi: 10.1038/ncomms14049.
8
Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.
Bioinformatics. 2017 Apr 15;33(8):1179-1186. doi: 10.1093/bioinformatics/btw777.
9
Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity.
Cell Syst. 2016 Sep 28;3(3):221-237.e9. doi: 10.1016/j.cels.2016.08.010. Epub 2016 Sep 15.
10
The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.
Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33. doi: 10.1002/cpbi.5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验