Suppr超能文献

所有单细胞:神经胶质生物学家的单细胞转录组学/表观基因组学实验设计与分析考量

All the single cells: Single-cell transcriptomics/epigenomics experimental design and analysis considerations for glial biologists.

作者信息

Prater Katherine E, Lin Kevin Z

机构信息

Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA.

Department of Biostatistics, University of Washington, Seattle, Washington, USA.

出版信息

Glia. 2025 Mar;73(3):451-473. doi: 10.1002/glia.24633. Epub 2024 Nov 19.

Abstract

Single-cell transcriptomics, epigenomics, and other 'omics applied at single-cell resolution can significantly advance hypotheses and understanding of glial biology. Omics technologies are revealing a large and growing number of new glial cell subtypes, defined by their gene expression profile. These subtypes have significant implications for understanding glial cell function, cell-cell communications, and glia-specific changes between homeostasis and conditions such as neurological disease. For many, the training in how to analyze, interpret, and understand these large datasets has been through reading and understanding literature from other fields like biostatistics. Here, we provide a primer for glial biologists on experimental design and analysis of single-cell RNA-seq datasets. Our goal is to further the understanding of why decisions are made about datasets and to enhance biologists' ability to interpret and critique their work and the work of others. We review the steps involved in single-cell analysis with a focus on decision points and particular notes for glia. The goal of this primer is to ensure that single-cell 'omics experiments continue to advance glial biology in a rigorous and replicable way.

摘要

单细胞转录组学、表观基因组学以及其他以单细胞分辨率应用的“组学”技术能够显著推动关于神经胶质生物学的假说及认识。“组学”技术正在揭示大量且数量不断增加的新神经胶质细胞亚型,这些亚型由其基因表达谱所定义。这些亚型对于理解神经胶质细胞功能、细胞间通讯以及神经胶质细胞在稳态与诸如神经疾病等状况之间的特异性变化具有重要意义。对于许多人而言,关于如何分析、解读和理解这些大型数据集的培训一直是通过阅读和理解生物统计学等其他领域的文献来进行的。在此,我们为神经胶质生物学家提供一份关于单细胞RNA测序数据集的实验设计与分析的入门指南。我们的目标是进一步理解为何要对数据集做出相关决策,并增强生物学家解读和评判自己及他人工作的能力。我们回顾单细胞分析所涉及的步骤,重点关注决策点以及针对神经胶质细胞的特别注意事项。本入门指南的目标是确保单细胞“组学”实验继续以严谨且可重复的方式推动神经胶质生物学的发展。

相似文献

2
Simultaneous Profiling of mRNA Transcriptome and DNA Methylome from a Single Cell.
Methods Mol Biol. 2019;1979:363-377. doi: 10.1007/978-1-4939-9240-9_21.
3
Single-cell omics: Overview, analysis, and application in biomedical science.
J Cell Biochem. 2021 Nov;122(11):1571-1578. doi: 10.1002/jcb.30134. Epub 2021 Aug 30.
4
Single-cell sequencing techniques from individual to multiomics analyses.
Exp Mol Med. 2020 Sep;52(9):1419-1427. doi: 10.1038/s12276-020-00499-2. Epub 2020 Sep 15.
5
Single cell transcriptomics: moving towards multi-omics.
Analyst. 2019 May 13;144(10):3172-3189. doi: 10.1039/c8an01852a.
6
MOSim: bulk and single-cell multilayer regulatory network simulator.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf110.
7
Kernel-based testing for single-cell differential analysis.
Genome Biol. 2024 May 3;25(1):114. doi: 10.1186/s13059-024-03255-1.
8
Beyond the Heartbeat: Single-Cell Omics Redefining Cardiovascular Research.
Curr Cardiol Rep. 2024 Nov;26(11):1183-1196. doi: 10.1007/s11886-024-02117-3. Epub 2024 Aug 19.
9
Mapping gene regulatory networks from single-cell omics data.
Brief Funct Genomics. 2018 Jul 1;17(4):246-254. doi: 10.1093/bfgp/elx046.
10
Experimental and computational technologies to dissect the kidney at the single-cell level.
Nephrol Dial Transplant. 2022 Mar 25;37(4):628-637. doi: 10.1093/ndt/gfaa233.

引用本文的文献

1
The Power of Neuroglia in Driving Brain Function.
Neurochem Res. 2025 Jun 5;50(3):184. doi: 10.1007/s11064-025-04437-4.

本文引用的文献

1
Integrated multimodal cell atlas of Alzheimer's disease.
Nat Neurosci. 2024 Dec;27(12):2366-2383. doi: 10.1038/s41593-024-01774-5. Epub 2024 Oct 14.
2
scaDA: A novel statistical method for differential analysis of single-cell chromatin accessibility sequencing data.
PLoS Comput Biol. 2024 Aug 2;20(8):e1011854. doi: 10.1371/journal.pcbi.1011854. eCollection 2024 Aug.
3
Quantifying 3'UTR length from scRNA-seq data reveals changes independent of gene expression.
Nat Commun. 2024 May 14;15(1):4050. doi: 10.1038/s41467-024-48254-9.
4
Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data.
Nat Biotechnol. 2025 Feb;43(2):247-257. doi: 10.1038/s41587-024-02182-7. Epub 2024 Apr 12.
5
eSVD-DE: cohort-wide differential expression in single-cell RNA-seq data using exponential-family embeddings.
BMC Bioinformatics. 2024 Mar 15;25(1):113. doi: 10.1186/s12859-024-05724-7.
7
WikiPathways 2024: next generation pathway database.
Nucleic Acids Res. 2024 Jan 5;52(D1):D679-D689. doi: 10.1093/nar/gkad960.
8
The Reactome Pathway Knowledgebase 2024.
Nucleic Acids Res. 2024 Jan 5;52(D1):D672-D678. doi: 10.1093/nar/gkad1025.
9
Infernape uncovers cell type-specific and spatially resolved alternative polyadenylation in the brain.
Genome Res. 2023 Oct;33(10):1774-1787. doi: 10.1101/gr.277864.123. Epub 2023 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验