Suppr超能文献

采用基于自动乳腺容积扫描的影像组学列线图对早期浸润性乳腺癌腋窝淋巴结转移风险进行无创评估:一项多中心研究

Non-invasive Assessment of Axillary Lymph Node Metastasis Risk in Early Invasive Breast Cancer Adopting Automated Breast Volume Scanning-Based Radiomics Nomogram: A Multicenter Study.

作者信息

Wang Hui, Yang Xin-Wu, Chen Fei, Qin Yuan-Yuan, Li Xuan-Bo, Ma Su-Mei, Lei Jun-Qiang, Nan Cai-Ling, Zhang Wei-Yang, Chen Wei, Guo Shun-Lin

机构信息

Department of Ultrasound, First Hospital of Lanzhou University, Lanzhou, China; First Clinical Medical College, Lanzhou University, Lanzhou, China.

College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing, China.

出版信息

Ultrasound Med Biol. 2023 May;49(5):1202-1211. doi: 10.1016/j.ultrasmedbio.2023.01.006. Epub 2023 Feb 5.

Abstract

OBJECTIVE

The aim of the work described here was to develop a non-invasive tool based on the radiomics and ultrasound features of automated breast volume scanning (ABVS), clinicopathological factors and serological indicators to evaluate axillary lymph node metastasis (ALNM) in patients with early invasive breast cancer (EIBC).

METHODS

We retrospectively analyzed 179 ABVS images of patients with EIBC at a single center from January 2016 to April 2022 and divided the patients into training and validation sets (ratio 8:2). Additionally, 97 ABVS images of patients with EIBC from a second center were enrolled as the test set. The radiomics signature was established with the least absolute shrinkage and selection operator. Significant ALNM predictors were screened using univariate logistic regression analysis and further combined to construct a nomogram using the multivariate logistic regression model. The receiver operating characteristic curve assessed the nomogram's predictive performance.

DISCUSSION

The constructed radiomics nomogram model, including ABVS radiomics signature, ultrasound assessment of axillary lymph node (ALN) status, convergence sign and erythrocyte distribution width (standard deviation), achieved moderate predictive performance for risk probability evaluation of ALNs in patients with EIBC. Compared with ultrasound, the nomogram model was able to provide a risk probability evaluation tool not only for the ALNs with positive ultrasound features but also for micrometastatic ALNs (generally without positive ultrasound features), which benefited from the radiomics analysis of multi-sourced data of patients with EIBC.

CONCLUSION

This ABVS-based radiomics nomogram model is a pre-operative, non-invasive and visualized tool that can help clinicians choose rational diagnostic and therapeutic protocols for ALNM.

摘要

目的

本文所述工作的目的是开发一种基于自动乳腺容积扫描(ABVS)的影像组学和超声特征、临床病理因素及血清学指标的非侵入性工具,以评估早期浸润性乳腺癌(EIBC)患者的腋窝淋巴结转移(ALNM)情况。

方法

我们回顾性分析了2016年1月至2022年4月在单一中心的179例EIBC患者的ABVS图像,并将患者分为训练集和验证集(比例为8:2)。此外,纳入了来自第二个中心的97例EIBC患者的ABVS图像作为测试集。使用最小绝对收缩和选择算子建立影像组学特征。通过单因素逻辑回归分析筛选出显著的ALNM预测因子,并进一步结合使用多因素逻辑回归模型构建列线图。采用受试者工作特征曲线评估列线图的预测性能。

讨论

构建的影像组学列线图模型,包括ABVS影像组学特征、腋窝淋巴结(ALN)状态的超声评估、汇合征和红细胞分布宽度(标准差),在评估EIBC患者ALN的风险概率方面具有中等预测性能。与超声相比,列线图模型不仅能够为具有阳性超声特征的ALN提供风险概率评估工具,还能为微转移ALN(通常无阳性超声特征)提供评估工具,这得益于对EIBC患者多源数据的影像组学分析。

结论

这种基于ABVS的影像组学列线图模型是一种术前、非侵入性且可视化的工具,可帮助临床医生为ALNM选择合理的诊断和治疗方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验