Suppr超能文献

基于深度学习的成人超声心动图心脏结构和功能自动解读系统的形式验证

Formal validation of a deep learning-based automated interpretation system for cardiac structure and function in adult echocardiography.

作者信息

Peng Guijuan, Ling Rongbo, Liu Xiaohua, Liu Qian, Zhong Xiaofang, Sheng Yuanyuan, Zheng Yingqi, Luo Shuyu, Yang Yumei, Lin Xiaoxuan, Tang Keming, Zheng Jialan, Chen Lixin, Ni Dong, Xu Jinfeng, Liu Yingying, Xue Wufeng

机构信息

Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.

The National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.

出版信息

Quant Imaging Med Surg. 2025 Apr 1;15(4):3093-3110. doi: 10.21037/qims-24-1852. Epub 2025 Mar 28.

Abstract

BACKGROUND

Accurate measurement of cardiac structure and function is the basis of diagnosis of cardiac diseases, but it is time-consuming and empirically-dependent. This study attempted to propose a deep learning (DL) interpretation of cardiac structure and function.

METHODS

The training dataset consisted of 416 video loops and 892 Doppler images drawn from 141 patients undergoing clinical echocardiography from 2020 to 2021. Two experts labeled these images using the Pair platform. From this, DL algorithms including the Auto-Echo and Auto-Doppler were trained to measure echocardiographic parameters. Subsequently, eight sonographers with different years of echocardiographic experience labeled a validation dataset of 178 new video loops and 391 Doppler images obtained from 60 new patients. One highly trained expert annotated the external validation dataset of 90 two-dimensional (2D) videos and 120 Doppler images. The standard deviation ratio (SD ratio), Bland-Altman analysis, interclass correlation coefficient (ICC), mean absolute deviation (MAD), absolute relative deviation, and correlation analysis were employed to investigate the agreement between DL and human experts.

RESULTS

For the structure parameters' measurements including four-chamber dimensions, the SD ratios ranged from 0.70 to 1.02, and the ICCs showed that automated measurements were equivalent or superior to human expert measurements. The correlation coefficients were greater than 0.85 for 83.3% of the parameters, the MADs ranged from -1.5 to 1.9 mm, and the absolute relative deviations ranged from 2.5% to 9.7%. However, large absolute deviations were observed for parameters in RV-A4C view and RV, which was consistent with human readers. For Doppler parameters, including four transvalvular velocity measurements, the correlation coefficients ranged from 0.81 to 0.99, the absolute relative deviation of all pulse Doppler parameters was within 10%, and 100% (9/9) of tissue Doppler parameters were within 5%. However, the velocity-time integral (VTI) of transvalvular velocity showed large absolute relative deviations between the automated and manual measurements. Auto-Echo saved 95.4% and Auto-Doppler saved 82.5% analysis time upon human experts. In the external validation cohort, the mean absolute relative deviation for almost all structural parameters and Doppler parameters was within 10%.

CONCLUSIONS

The measurements of our DL interpretation had high accuracy, increased efficiency of the examination, and were inter-changeable with human experts' assessment. It has shown human-like patterns of measurements, as the same trend of difference can be observed between DL and different experienced readers.

摘要

背景

准确测量心脏结构和功能是心脏病诊断的基础,但这既耗时又依赖经验。本研究试图提出一种对心脏结构和功能的深度学习(DL)解释。

方法

训练数据集由2020年至2021年接受临床超声心动图检查的141例患者的416个视频环和892幅多普勒图像组成。两名专家使用Pair平台对这些图像进行标注。据此,训练包括自动回声和自动多普勒在内的DL算法以测量超声心动图参数。随后,八名具有不同超声心动图经验年限的超声检查人员对从60名新患者获得的178个新视频环和391幅多普勒图像的验证数据集进行标注。一名训练有素的专家对90个二维(2D)视频和120幅多普勒图像的外部验证数据集进行注释。采用标准差比(SD比)、Bland-Altman分析、组内相关系数(ICC)、平均绝对偏差(MAD)、绝对相对偏差和相关性分析来研究DL与人类专家之间的一致性。

结果

对于包括四腔心尺寸在内的结构参数测量,SD比范围为0.70至1.02,ICC表明自动测量等同于或优于人类专家测量。83.3%的参数相关系数大于0.85,MAD范围为-1.5至1.9毫米,绝对相对偏差范围为2.5%至9.7%。然而,在右心室-四腔心视图和右心室中的参数观察到较大的绝对偏差,这与人类读者的情况一致。对于多普勒参数,包括四个跨瓣速度测量,相关系数范围为0.81至0.99,所有脉冲多普勒参数的绝对相对偏差在10%以内,100%(9/9)的组织多普勒参数在5%以内。然而跨瓣速度的速度时间积分(VTI)在自动测量和手动测量之间显示出较大的绝对相对偏差。与人类专家相比,自动回声节省了95.4%的分析时间,自动多普勒节省了82.5%的分析时间 在外部验证队列中,几乎所有结构参数和多普勒参数的平均绝对相对偏差在10%以内。

结论

我们的DL解释测量具有高准确性,提高了检查效率,并且与人类专家的评估可互换。它显示出类似人类的测量模式,因为在DL与不同经验水平的读者之间可以观察到相同的差异趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42e2/11994521/e3005be2554a/qims-15-04-3093-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验