Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , Mülheim an der Ruhr 45470 , Germany.
Institute for Solid State Physics , The University of Tokyo , Kashiwa , Chiba 277-8581 , Japan.
ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38595-38605. doi: 10.1021/acsami.9b06752. Epub 2019 Oct 8.
Herein, we report the synthesis and electrochemical oxygen evolution experiments for a graphene-supported NiMnO catalyst. The changes that occur at the Ni active sites during the electrocatalyic oxygen evolution reaction (OER) were elucidated by a combination of operando Ni L-edge X-ray absorption spectroscopy (XAS) and Ni 2p3d resonant inelastic X-ray scattering (RIXS). These data are compared to reference measurements on NiO, β-Ni(OH), β-NiOOH, and γ-NiOOH. Through this comparative analysis, we are able to show that under alkaline conditions (0.1 M KOH), the oxides of the NiMnO catalyst are converted to hydroxides. At the onset of catalysis (1.47 V), the β-Ni(OH)-like phase is oxidized and converted to a dominantly γ-NiOOH phase. The present study thus challenges the notion that the β-NiOOH phase is the active phase in OER and provides further evidence that the γ-NiOOH phase is catalytically active. The ability to use Ni L-edge XAS and 2p3d RIXS to provide a rational basis for structure-activity correlations is highlighted.
在此,我们报告了一种负载在石墨烯上的 NiMnO 催化剂的合成及电化学氧气析出实验。通过结合原位 Ni L 边 X 射线吸收光谱(XAS)和 Ni 2p3d 共振非弹性 X 射线散射(RIXS),阐明了 Ni 活性位在电催化氧气析出反应(OER)过程中的变化。这些数据与 NiO、β-Ni(OH)、β-NiOOH 和 γ-NiOOH 的参考测量值进行了比较。通过这种比较分析,我们能够表明在碱性条件(0.1 M KOH)下,NiMnO 催化剂的氧化物被转化为氢氧化物。在催化作用开始时(1.47 V),β-Ni(OH)样相被氧化并转化为主要的 γ-NiOOH 相。因此,本研究挑战了β-NiOOH 相是 OER 中活性相的观点,并提供了进一步的证据表明γ-NiOOH 相具有催化活性。突出了使用 Ni L 边 XAS 和 2p3d RIXS 为结构-活性相关性提供合理依据的能力。