Suppr超能文献

人工智能辅助系统提高结直肠肿瘤的内镜识别率。

Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms.

机构信息

Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.

Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.

出版信息

Clin Gastroenterol Hepatol. 2020 Jul;18(8):1874-1881.e2. doi: 10.1016/j.cgh.2019.09.009. Epub 2019 Sep 13.

Abstract

BACKGROUND & AIMS: Precise optical diagnosis of colorectal polyps could improve the cost-effectiveness of colonoscopy and reduce polypectomy-related complications. However, it is difficult for community-based non-experts to obtain sufficient diagnostic performance. Artificial intelligence-based systems have been developed to analyze endoscopic images; they identify neoplasms with high accuracy and low interobserver variation. We performed a multi-center study to determine the diagnostic accuracy of EndoBRAIN, an artificial intelligence-based system that analyzes cell nuclei, crypt structure, and microvessels in endoscopic images, in identification of colon neoplasms.

METHODS

The EndoBRAIN system was initially trained using 69,142 endocytoscopic images, taken at 520-fold magnification, from patients with colorectal polyps who underwent endoscopy at 5 academic centers in Japan from October 2017 through March 2018. We performed a retrospective comparative analysis of the diagnostic performance of EndoBRAIN vs that of 30 endoscopists (20 trainees and 10 experts); the endoscopists assessed images from 100 cases produced via white-light microscopy, endocytoscopy with methylene blue staining, and endocytoscopy with narrow-band imaging. EndoBRAIN was used to assess endocytoscopic, but not white-light, images. The primary outcome was the accuracy of EndoBrain in distinguishing neoplasms from non-neoplasms, compared with that of endoscopists, using findings from pathology analysis as the reference standard.

RESULTS

In analysis of stained endocytoscopic images, EndoBRAIN identified colon lesions with 96.9% sensitivity (95% CI, 95.8%-97.8%), 100% specificity (95% CI, 99.6%-100%), 98% accuracy (95% CI, 97.3%-98.6%), a 100% positive-predictive value (95% CI, 99.8%-100%), and a 94.6% negative-predictive (95% CI, 92.7%-96.1%); these values were all significantly greater than those of the endoscopy trainees and experts. In analysis of narrow-band images, EndoBRAIN distinguished neoplastic from non-neoplastic lesions with 96.9% sensitivity (95% CI, 95.8-97.8), 94.3% specificity (95% CI, 92.3-95.9), 96.0% accuracy (95% CI, 95.1-96.8), a 96.9% positive-predictive value, (95% CI, 95.8-97.8), and a 94.3% negative-predictive value (95% CI, 92.3-95.9); these values were all significantly higher than those of the endoscopy trainees, sensitivity and negative-predictive value were significantly higher but the other values are comparable to those of the experts.

CONCLUSIONS

EndoBRAIN accurately differentiated neoplastic from non-neoplastic lesions in stained endocytoscopic images and endocytoscopic narrow-band images, when pathology findings were used as the standard. This technology has been authorized for clinical use by the Japanese regulatory agency and should be used in endoscopic evaluation of small polyps more widespread clinical settings. UMIN clinical trial no: UMIN000028843.

摘要

背景与目的

精确的结直肠息肉光学诊断可以提高结肠镜检查的成本效益,减少息肉切除术相关的并发症。然而,社区内的非专家很难获得足够的诊断性能。已经开发出基于人工智能的系统来分析内窥镜图像;它们可以高精度和低观察者间变异来识别肿瘤。我们进行了一项多中心研究,以确定 EndoBRAIN 的诊断准确性,EndoBRAIN 是一种基于人工智能的系统,它分析内窥镜图像中的细胞核、隐窝结构和微血管,以识别结肠肿瘤。

方法

EndoBRAIN 系统最初是使用 2017 年 10 月至 2018 年 3 月在日本 5 个学术中心接受内窥镜检查的患有结直肠息肉的患者的 69142 个内镜下图像进行训练的,这些图像是在 520 倍放大倍数下采集的。我们对 EndoBRAIN 与 30 名内镜医生(20 名学员和 10 名专家)的诊断性能进行了回顾性对比分析;内镜医生评估了通过白光显微镜、亚甲蓝染色内镜和窄带成像内镜获得的 100 例图像。EndoBRAIN 用于评估内镜下但不是白光下的图像。主要结局是 EndoBrain 与病理分析作为参考标准的内镜医生相比,在区分肿瘤与非肿瘤方面的准确性。

结果

在分析染色的内镜下图像时,EndoBRAIN 对结肠病变的识别具有 96.9%的敏感性(95%CI,95.8%-97.8%)、100%的特异性(95%CI,99.6%-100%)、98%的准确率(95%CI,97.3%-98.6%)、100%的阳性预测值(95%CI,99.8%-100%)和 94.6%的阴性预测值(95%CI,92.7%-96.1%);这些值均显著高于内镜学员和专家。在分析窄带图像时,EndoBRAIN 对肿瘤与非肿瘤病变的鉴别具有 96.9%的敏感性(95%CI,95.8-97.8%)、94.3%的特异性(95%CI,92.3-95.9%)、96.0%的准确率(95%CI,95.1%-96.8%)、96.9%的阳性预测值(95%CI,95.8-97.8%)和 94.3%的阴性预测值(95%CI,92.3-95.9%);这些值均显著高于内镜学员,敏感性和阴性预测值均显著较高,但其他值与专家相当。

结论

当以病理结果为标准时,EndoBRAIN 可准确区分染色内镜下图像和内镜下窄带图像中的肿瘤与非肿瘤病变。该技术已获得日本监管机构的临床使用授权,应在小息肉的内镜评估中更广泛地应用于临床。UMIN 临床试验注册号:UMIN000028843。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验