Suppr超能文献

石墨烯-氮化硼-石墨烯交叉点阻变存储器具有三个稳定的电阻状态。

Graphene-Boron Nitride-Graphene Cross-Point Memristors with Three Stable Resistive States.

机构信息

Institute of Functional Nano & Soft Materials, Collaborative Innovation Center for Suzhou Nanoscience and Technology , Soochow University , 215123 Suzhou , China.

Departament d'Enginyeria Electrònica i Biomèdica , Universitat de Barcelona , Martí i Franquès 1 , E-08028 Barcelona , Spain.

出版信息

ACS Appl Mater Interfaces. 2019 Oct 16;11(41):37999-38005. doi: 10.1021/acsami.9b04412. Epub 2019 Oct 1.

Abstract

Two-dimensional (2D) material-based memristors have shown several properties that are not shown by traditional ones, such as high transparency, robust mechanical strength and flexibility, superb chemical stability, enhanced thermal heat dissipation, ultralow power consumption, coexistence of bipolar and threshold resistive switching, and ultrastable relaxation when used as electronic synapse (among others). However, several electrical performances often required in memristive applications, such as the generation of multiple stable resistive states for high-density information storage, still have never been demonstrated. Here, we present the first 2D material-based memristors that exhibit three stable and well-distinguishable resistive states. By using a multilayer hexagonal boron nitride (h-BN) stack sandwiched by multilayer graphene (G) electrodes, we fabricate 5 μm × 5 μm cross-point Au/Ti/G/h-BN/G/Au memristors that can switch between each two or three resistive states, depending on the current limitation (CL) and reset voltage used. The use of graphene electrodes plus a small cross-point structure are key elements to observe the tristate operation, which has not been observed in larger (100 μm × 100 μm) devices with an identical Au/Ti/G/h-BN/G/Au structure nor in similar small (5 μm × 5 μm) devices without graphene interfacial layers (i.e., Au/Ti/h-BN/Au). Basically, we generate an intermediate state between the high resistive state and the low resistive state (LRS), named soft-LRS (S-LRS), which may be related to the formation of a narrower conductive nanofilament across the h-BN because of the ability of graphene to limit metal penetration (at low CLs). All the 2D materials have been fabricated using the scalable chemical vapor deposition approach, which is an immediate advantage compared to other works using mechanical exfoliated 2D materials.

摘要

二维(2D)材料基忆阻器具有许多传统忆阻器所不具备的特性,例如高透明度、坚固的机械强度和柔韧性、优异的化学稳定性、增强的热散热、超低功耗、双极和阈值电阻开关共存以及用作电子突触时的超稳定弛豫(等等)。然而,忆阻器应用中经常需要几种电性能,例如为高密度信息存储生成多个稳定的阻变状态,这些性能仍未得到证明。在这里,我们展示了第一个具有三个稳定且可区分的阻变状态的基于 2D 材料的忆阻器。通过使用多层六方氮化硼(h-BN)堆叠夹在多层石墨烯(G)电极之间,我们制造了 5 μm×5 μm 的交叉点 Au/Ti/G/h-BN/G/Au 忆阻器,该忆阻器可以根据电流限制(CL)和重置电压在两个或三个阻变状态之间切换。使用石墨烯电极加上小的交叉点结构是观察三态操作的关键因素,这在具有相同的 Au/Ti/G/h-BN/G/Au 结构的更大(100 μm×100 μm)器件或没有石墨烯界面层的类似较小(5 μm×5 μm)器件中均未观察到(即,Au/Ti/h-BN/Au)。基本上,我们在高阻态和低阻态(LRS)之间产生了一个中间状态,称为软 LRS(S-LRS),这可能与由于石墨烯限制金属渗透的能力而在 h-BN 中形成更窄的导电纳米线有关(在低 CLs 下)。所有的 2D 材料都是使用可扩展的化学气相沉积方法制造的,与使用机械剥落的 2D 材料相比,这是一个直接的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验