Xie Jing, Yekta Ali Ebadi, Mamun Fahad Al, Zhu Kaichen, Chen Maolin, Pazos Sebastian, Zheng Wenwen, Zhang Xixiang, Tongay Seth Ariel, Li Xinyi, Wu Huaqiang, Nemanich Robert, Akinwande Deji, Lanza Mario, Sanchez Esqueda Ivan
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA.
Department of Physics, Arizona State University, Tempe, AZ, USA.
Nat Nanotechnol. 2025 Jul 31. doi: 10.1038/s41565-025-01988-z.
Two-dimensional materials hold promise for advanced complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS electronics, including neuromorphic and in-memory computing. Hexagonal boron nitride (hBN) is particularly attractive for non-volatile resistive-switching devices (that is, memristors) due to its outstanding electronic, mechanical and chemical stability. However, integrating hBN memristors with Si-CMOS electronics faces challenges as it requires either high-temperature synthesis (exceeding thermal budgets) or transfer methods that introduce defects, impacting device performance and reliability. Here we introduce the synthesis of hBN films at CMOS-compatible temperatures (<380 °C) using electron cyclotron resonance plasma-enhanced chemical vapour deposition to realize transfer-free, CMOS-compatible hBN memristors with outstanding electrical characteristics. Our studies indicate a polycrystalline structure with turbostratic features in as-deposited hBN films and good wafer-level uniformity in morphology (size, shape and orientation). We demonstrate a large array of hBN memristors achieving high yield (~90%), stability (endurance, retention and repeatability), programming precision for multistate operation (>16 states) and low-frequency noise performance with minimal random telegraph noise. Furthermore, we directly integrate memristive devices on industrial CMOS test vehicles to demonstrate excellent endurance, achieving millions of programming cycles with a high technology readiness level. This represents an important step towards the wafer-scale CMOS integration of hBN-memristor-based electronics.
二维材料有望应用于先进的互补金属氧化物半导体(CMOS)及超越CMOS的电子器件,包括神经形态计算和内存计算。六方氮化硼(hBN)因其出色的电子、机械和化学稳定性,对于非易失性电阻开关器件(即忆阻器)特别具有吸引力。然而,将hBN忆阻器与硅CMOS电子器件集成面临挑战,因为这需要高温合成(超过热预算)或引入缺陷的转移方法,从而影响器件性能和可靠性。在此,我们介绍了使用电子回旋共振等离子体增强化学气相沉积在CMOS兼容温度(<380°C)下合成hBN薄膜,以实现具有出色电学特性的无转移、CMOS兼容的hBN忆阻器。我们的研究表明,沉积态的hBN薄膜具有具有 turbostratic 特征的多晶结构,并且在形态(尺寸、形状和取向)方面具有良好的晶圆级均匀性。我们展示了大量的hBN忆阻器,其成品率高(约90%)、稳定性好(耐久性、保持性和重复性)、多态操作的编程精度高(>16个状态)以及低频噪声性能且随机电报噪声极小。此外,我们将忆阻器件直接集成到工业CMOS测试平台上,以展示出色的耐久性,在高技术就绪水平下实现数百万次编程循环。这代表了基于hBN忆阻器的电子器件在晶圆级CMOS集成方面迈出的重要一步。