Suppr超能文献

使用计算机视觉进行耳科诊断:一种自动化机器学习方法。

Otoscopic diagnosis using computer vision: An automated machine learning approach.

机构信息

Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada.

出版信息

Laryngoscope. 2020 Jun;130(6):1408-1413. doi: 10.1002/lary.28292. Epub 2019 Sep 18.

Abstract

OBJECTIVE

Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use an automated machine learning approach to build a computer vision algorithm for otoscopic diagnosis capable of greater accuracy than trained physicians. This algorithm could be used by primary care providers to facilitate timely referral, triage, and effective treatment.

METHODS

Otoscopic images were obtained from Google Images (Google Inc., Mountain View, CA), from open access repositories, and within otolaryngology clinics associated with our institution. After preprocessing, 1,366 unique images were uploaded to the Google Cloud Vision AutoML platform (Google Inc.) and annotated with one or more of 14 otologic diagnoses. A consensus set of labels for each otoscopic image was attained, and a multilabel classifier architecture algorithm was trained. The performance of the algorithm on an 89-image test set was compared to the performance of physicians from pediatrics, emergency medicine, otolaryngology, and family medicine.

RESULTS

For all diagnoses combined, the average precision (positive predictive value) of the algorithm was 90.9%, and the average recall (sensitivity) was 86.1%. The algorithm made 79 correct diagnoses with an accuracy of 88.7%. The average physician accuracy was 58.9%.

CONCLUSION

We have created a computer vision algorithm using automated machine learning that on average rivals the accuracy of the physicians we tested. Fourteen different otologic diagnoses were analyzed. The field of medicine will be changed dramatically by artificial intelligence within the next few decades, and physicians of all specialties must be prepared to guide that process.

LEVEL OF EVIDENCE

NA Laryngoscope, 130:1408-1413, 2020.

摘要

目的

由于等待名单冗长且缺乏专家,耳鼻喉科的就诊机会有限,尤其是在农村和偏远地区。本研究的目的是利用自动化机器学习方法构建一种用于耳镜诊断的计算机视觉算法,其准确性要优于经过培训的医生。该算法可由初级保健提供者使用,以促进及时转诊、分诊和有效治疗。

方法

从 Google Images(谷歌公司,加利福尼亚州山景城)、开放获取存储库以及与我们机构相关的耳鼻喉科诊所获取耳镜图像。经过预处理,将 1366 张独特的图像上传到 Google Cloud Vision AutoML 平台(谷歌公司),并标注了 14 种耳科诊断中的一种或多种。对每张耳镜图像达成共识标签集,并训练多标签分类器架构算法。将算法在 89 张图像测试集中的性能与儿科、急诊医学、耳鼻喉科和家庭医学医生的表现进行了比较。

结果

对于所有综合诊断,算法的平均精度(阳性预测值)为 90.9%,平均召回率(敏感性)为 86.1%。算法做出了 79 次正确诊断,准确率为 88.7%。平均医生准确率为 58.9%。

结论

我们使用自动化机器学习创建了一个计算机视觉算法,其平均准确性可与我们测试的医生相媲美。分析了 14 种不同的耳科诊断。在未来几十年,人工智能将极大地改变医学领域,所有医学专业的医生都必须做好指导这一过程的准备。

证据水平

无 喉镜,130:1408-1413,2020。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验