Suppr超能文献

通过机器学习对重症监护患者压疮进行预测和阶段分类

Prediction and Stage Classification of Pressure Ulcers in Intensive Care Patients by Machine Learning.

作者信息

Kahveci Mürsel, Uğur Levent

机构信息

Anesthesiology and Reanimation, Amasya Training and Reserch Hospital, Amasya University, Amasya 05100, Turkey.

Department of Mechanical Engineering, Faculty of Engineering, Amasya University, Amasya 05100, Turkey.

出版信息

Diagnostics (Basel). 2025 May 14;15(10):1239. doi: 10.3390/diagnostics15101239.

Abstract

Pressure ulcers are a serious clinical problem associated with high morbidity, mortality and healthcare costs, especially in intensive care unit (ICU) patients. Existing risk assessment tools, such as the Braden Score, are often inadequate in ICU patients and have poor discriminatory power between classes. This increases the need for more sensitive, predictive and integrative systems. The aim of this study was to classify pressure ulcer stages (Stages I-IV) with high accuracy using machine learning algorithms using demographic, clinical and laboratory data of ICU patients and to evaluate the model performance at a level that can be integrated into clinical decision support systems. A total of 200 patients hospitalized in the ICU were included in the study. Using demographic, clinical and laboratory data of the patients, six different machine learning algorithms (SVM, KNN, ANN, Decision Tree, Naive Bayes and Discriminant Analysis) were used for classification. The models were evaluated using confusion matrices, ROC-AUC analyses and metrics such as class-based sensitivity and error rate. SVM, KNN and ANN models showed the highest success in classifying pressure ulcer stages, achieving 99% overall accuracy and excellent performance with AUC = 1.00. Variables such as Braden score, albumin and CRP levels contributed significantly to model performance. ROC curves showed that the models provided strong discrimination between classes. Key predictors of pressure ulcer severity included prolonged ICU stay ( < 0.001), low albumin (Stage I: 3.4 ± 0.5 g/dL vs. Stage IV: 2.4 ± 0.8 g/dL; < 0.001) and high CRP (Stage I: 28 mg/L vs. Stage IV: 142 mg/L; < 0.001). This study shows that machine learning algorithms offer high accuracy and generalization potential in pressure ulcer classification. In particular, the effectiveness of algorithms such as SVM, ANN and KNN in detecting early-stage ulcers is promising in terms of integration into clinical decision support systems. In future studies, the clinical validity of the model should be increased with multicenter datasets and visual-data-based hybrid models.

摘要

压疮是一个严重的临床问题,与高发病率、死亡率和医疗成本相关,尤其是在重症监护病房(ICU)患者中。现有的风险评估工具,如Braden评分,在ICU患者中往往不够充分,且在不同类别之间的区分能力较差。这就增加了对更敏感、更具预测性和综合性系统的需求。本研究的目的是使用机器学习算法,利用ICU患者的人口统计学、临床和实验室数据,高精度地对压疮分期(I-IV期)进行分类,并在可集成到临床决策支持系统的水平上评估模型性能。该研究共纳入了200名在ICU住院的患者。利用患者的人口统计学、临床和实验室数据,使用六种不同的机器学习算法(支持向量机、K近邻算法、人工神经网络、决策树、朴素贝叶斯和判别分析)进行分类。使用混淆矩阵、ROC-AUC分析以及基于类别的敏感性和错误率等指标对模型进行评估。支持向量机、K近邻算法和人工神经网络模型在压疮分期分类中表现出最高的成功率,总体准确率达到99%,AUC = 1.00时性能优异。Braden评分、白蛋白和CRP水平等变量对模型性能有显著贡献。ROC曲线表明,这些模型在不同类别之间具有很强的区分能力。压疮严重程度的关键预测因素包括ICU住院时间延长(<0.001)、低白蛋白水平(I期:3.4±0.5 g/dL vs. IV期:2.4±0.8 g/dL;<0.001)和高CRP水平(I期:28 mg/L vs. IV期:142 mg/L;<0.001)。本研究表明,机器学习算法在压疮分类中具有高精度和泛化潜力。特别是,支持向量机、人工神经网络和K近邻算法等算法在检测早期溃疡方面的有效性,对于集成到临床决策支持系统而言很有前景。在未来的研究中,应通过多中心数据集和基于视觉数据的混合模型提高模型的临床有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c458/12109807/499c356ffddb/diagnostics-15-01239-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验