Suppr超能文献

通过基于深度学习的实时重症监护变量稳健缺失值插补对压疮进行提前预测。

In-Advance Prediction of Pressure Ulcers via Deep-Learning-Based Robust Missing Value Imputation on Real-Time Intensive Care Variables.

作者信息

Kim Minkyu, Kim Tae-Hoon, Kim Dowon, Lee Donghoon, Kim Dohyun, Heo Jeongwon, Kang Seonguk, Ha Taejun, Kim Jinju, Moon Da Hye, Heo Yeonjeong, Kim Woo Jin, Lee Seung-Joon, Kim Yoon, Park Sang Won, Han Seon-Sook, Choi Hyun-Soo

机构信息

Department of Research & Development, Ziovision Co., Ltd., Chuncheon 24341, Republic of Korea.

Department of Internal Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.

出版信息

J Clin Med. 2023 Dec 20;13(1):36. doi: 10.3390/jcm13010036.

Abstract

Pressure ulcers (PUs) are a prevalent skin disease affecting patients with impaired mobility and in high-risk groups. These ulcers increase patients' suffering, medical expenses, and burden on medical staff. This study introduces a clinical decision support system and verifies it for predicting real-time PU occurrences within the intensive care unit (ICU) by using MIMIC-IV and in-house ICU data. We develop various machine learning (ML) and deep learning (DL) models for predicting PU occurrences in real time using the MIMIC-IV and validate using the MIMIC-IV and Kangwon National University Hospital (KNUH) dataset. To address the challenge of missing values in time series, we propose a novel recurrent neural network model, GRU-D++. This model outperformed other experimental models by achieving the area under the receiver operating characteristic curve (AUROC) of 0.945 for the on-time prediction and AUROC of 0.912 for 48h in-advance prediction. Furthermore, in the external validation with the KNUH dataset, the fine-tuned GRU-D++ model demonstrated superior performances, achieving an AUROC of 0.898 for on-time prediction and an AUROC of 0.897 for 48h in-advance prediction. The proposed GRU-D++, designed to consider temporal information and missing values, stands out for its predictive accuracy. Our findings suggest that this model can significantly alleviate the workload of medical staff and prevent the worsening of patient conditions by enabling timely interventions for PUs in the ICU.

摘要

压疮(PUs)是一种常见的皮肤病,会影响行动不便的患者以及高危人群。这些溃疡增加了患者的痛苦、医疗费用以及医护人员的负担。本研究引入了一种临床决策支持系统,并通过使用MIMIC-IV和内部重症监护病房(ICU)数据对其进行验证,以预测ICU内压疮的实时发生情况。我们开发了各种机器学习(ML)和深度学习(DL)模型,用于使用MIMIC-IV实时预测压疮的发生情况,并使用MIMIC-IV和江原国立大学医院(KNUH)数据集进行验证。为了解决时间序列中缺失值的挑战,我们提出了一种新颖的递归神经网络模型GRU-D++。该模型在按时预测方面的受试者操作特征曲线下面积(AUROC)达到0.945,提前48小时预测的AUROC为0.912,优于其他实验模型。此外,在使用KNUH数据集进行的外部验证中,经过微调的GRU-D++模型表现出色,按时预测的AUROC为0.898,提前48小时预测的AUROC为0.897。所提出的GRU-D++模型旨在考虑时间信息和缺失值,以其预测准确性脱颖而出。我们的研究结果表明,该模型可以通过在ICU中对压疮进行及时干预,显著减轻医护人员的工作量,并防止患者病情恶化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2e4/10780209/116831226275/jcm-13-00036-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验