Suppr超能文献

Sci-Hi-C:一种在大量单细胞中绘制 3D 基因组结构的单细胞 Hi-C 方法。

Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA, United States.

Department of Pathology, University of Washington, Seattle, WA, United States.

出版信息

Methods. 2020 Jan 1;170:61-68. doi: 10.1016/j.ymeth.2019.09.012. Epub 2019 Sep 16.

Abstract

The highly dynamic nature of chromosome conformation and three-dimensional (3D) genome organization leads to cell-to-cell variability in chromatin interactions within a cell population, even if the cells of the population appear to be functionally homogeneous. Hence, although Hi-C is a powerful tool for mapping 3D genome organization, this heterogeneity of chromosome higher order structure among individual cells limits the interpretive power of population based bulk Hi-C assays. Moreover, single-cell studies have the potential to enable the identification and characterization of rare cell populations or cell subtypes in a heterogeneous population. However, it may require surveying relatively large numbers of single cells to achieve statistically meaningful observations in single-cell studies. By applying combinatorial cellular indexing to chromosome conformation capture, we developed single-cell combinatorial indexed Hi-C (sci-Hi-C), a high throughput method that enables mapping chromatin interactomes in large number of single cells. We demonstrated the use of sci-Hi-C data to separate cells by karytoypic and cell-cycle state differences and to identify cellular variability in mammalian chromosomal conformation. Here, we provide a detailed description of method design and step-by-step working protocols for sci-Hi-C.

摘要

染色体构象和三维(3D)基因组组织的高度动态特性导致即使细胞群体中的细胞表现出功能上的均一性,染色质相互作用在细胞群体内也存在细胞间的可变性。因此,尽管 Hi-C 是绘制 3D 基因组组织的有力工具,但个体细胞间染色体高级结构的这种异质性限制了基于群体的批量 Hi-C 测定的解释能力。此外,单细胞研究有可能识别和表征异质群体中的稀有细胞群体或细胞亚型。然而,在单细胞研究中实现具有统计学意义的观察结果,可能需要对相对大量的单细胞进行调查。通过将组合细胞索引应用于染色体构象捕获,我们开发了单细胞组合索引 Hi-C(sci-Hi-C),这是一种高通量方法,可用于在大量单细胞中绘制染色质相互作用组。我们证明了 sci-Hi-C 数据可用于通过核型和细胞周期状态差异来分离细胞,并鉴定哺乳动物染色体构象中的细胞变异性。在这里,我们提供了 sci-Hi-C 的详细方法设计和分步工作方案描述。

相似文献

4
Iteratively improving Hi-C experiments one step at a time.一次改进一个步骤,迭代优化 Hi-C 实验。
Methods. 2018 Jun 1;142:47-58. doi: 10.1016/j.ymeth.2018.04.033. Epub 2018 Apr 30.
10
Massively multiplex single-cell Hi-C.大规模多重单细胞Hi-C技术
Nat Methods. 2017 Mar;14(3):263-266. doi: 10.1038/nmeth.4155. Epub 2017 Jan 30.

引用本文的文献

5
Single-Cell Hi-C Technologies and Computational Data Analysis.单细胞Hi-C技术与计算数据分析
Adv Sci (Weinh). 2025 Mar;12(9):e2412232. doi: 10.1002/advs.202412232. Epub 2025 Jan 30.
6
Mapping the 3D genome architecture.绘制三维基因组结构图谱。
Comput Struct Biotechnol J. 2024 Dec 23;27:89-101. doi: 10.1016/j.csbj.2024.12.018. eCollection 2025.

本文引用的文献

5
Three-dimensional genome structures of single diploid human cells.单细胞人类二倍体的三维基因组结构。
Science. 2018 Aug 31;361(6405):924-928. doi: 10.1126/science.aat5641. Epub 2018 Aug 30.
6
Understanding the 3D genome: Emerging impacts on human disease.理解三维基因组:对人类疾病的新影响。
Semin Cell Dev Biol. 2019 Jun;90:62-77. doi: 10.1016/j.semcdb.2018.07.004. Epub 2018 Jul 12.
7
Unsupervised embedding of single-cell Hi-C data.无监督单细胞 Hi-C 数据嵌入。
Bioinformatics. 2018 Jul 1;34(13):i96-i104. doi: 10.1093/bioinformatics/bty285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验