Suppr超能文献

理解三维基因组:对人类疾病的新影响。

Understanding the 3D genome: Emerging impacts on human disease.

机构信息

Department of Microbiology, University of Washington, USA.

Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.

出版信息

Semin Cell Dev Biol. 2019 Jun;90:62-77. doi: 10.1016/j.semcdb.2018.07.004. Epub 2018 Jul 12.

Abstract

Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.

摘要

最近出现的一系列新技术允许定量描绘染色质结构,极大地扩展了我们对基因组在细胞核的三维(3D)空间中如何组织的理解。现在很清楚的是,真核生物基因组的层次组织对核活动(如转录、复制)以及细胞和发育事件(如细胞周期、细胞命运决定和胚胎发育)具有关键影响。在这篇综述中,我们讨论了关于 3D 基因组层次结构的建立和维持的新见解,以及在正常发育过程中这种层次结构如何经历动态重排,以及其扰动如何导致人类疾病,强调了将不同的 3D 基因组结构成分与多种人类疾病联系起来的累积证据,以及 3D 基因组紊乱导致疾病表型的新兴机制。

相似文献

1
Understanding the 3D genome: Emerging impacts on human disease.
Semin Cell Dev Biol. 2019 Jun;90:62-77. doi: 10.1016/j.semcdb.2018.07.004. Epub 2018 Jul 12.
2
What's in the "fold"?
Life Sci. 2018 Oct 15;211:118-125. doi: 10.1016/j.lfs.2018.09.021. Epub 2018 Sep 10.
3
The Three-Dimensional Organization of Mammalian Genomes.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:265-289. doi: 10.1146/annurev-cellbio-100616-060531. Epub 2017 Aug 7.
4
Role of lamins in 3D genome organization and global gene expression.
Nucleus. 2019 Dec;10(1):33-41. doi: 10.1080/19491034.2019.1578601.
6
3D genome organization in the central nervous system, implications for neuropsychological disorders.
J Genet Genomics. 2021 Dec;48(12):1045-1056. doi: 10.1016/j.jgg.2021.06.017. Epub 2021 Jul 18.
7
Unraveling the 3D genome of human malaria parasites.
Semin Cell Dev Biol. 2019 Jun;90:144-153. doi: 10.1016/j.semcdb.2018.07.015. Epub 2018 Jul 27.
8
The role of nuclear matrix protein HNRNPU in maintaining the architecture of 3D genome.
Semin Cell Dev Biol. 2019 Jun;90:161-167. doi: 10.1016/j.semcdb.2018.07.006. Epub 2018 Jul 20.
9
Disruption of the 3D cancer genome blueprint.
Epigenomics. 2017 Jan;9(1):47-55. doi: 10.2217/epi-2016-0111. Epub 2016 Dec 12.

引用本文的文献

1
The emerging sequence grammar of 3D genome organisation.
Hum Genet. 2025 Aug 25. doi: 10.1007/s00439-025-02772-8.
2
From 2D to 4D: a Containerized Workflow and Browser to Explore Dynamic Chromatin Architecture.
bioRxiv. 2025 Jul 18:2025.07.13.664622. doi: 10.1101/2025.07.13.664622.
4
Senescence-Associated Chromatin Rewiring Promotes Inflammation and Transposable Element Activation.
bioRxiv. 2025 Jun 17:2025.06.11.659151. doi: 10.1101/2025.06.11.659151.
6
Emerging mechanomedicines informed by mechanotransduction along the integrin-cytoskeleton-nucleus axis.
APL Bioeng. 2025 Jun 10;9(2):021503. doi: 10.1063/5.0255473. eCollection 2025 Jun.
8
Higher frequency of homologous chromosome pairing in human adult aortic endothelial cells.
bioRxiv. 2025 Mar 17:2025.03.15.643486. doi: 10.1101/2025.03.15.643486.
9
Mapping the 3D genome architecture.
Comput Struct Biotechnol J. 2024 Dec 23;27:89-101. doi: 10.1016/j.csbj.2024.12.018. eCollection 2025.

本文引用的文献

1
Multiplex chromatin interactions with single-molecule precision.
Nature. 2019 Feb;566(7745):558-562. doi: 10.1038/s41586-019-0949-1. Epub 2019 Feb 18.
2
Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus.
Cell. 2018 Jul 26;174(3):744-757.e24. doi: 10.1016/j.cell.2018.05.024. Epub 2018 Jun 7.
3
Real-time imaging of DNA loop extrusion by condensin.
Science. 2018 Apr 6;360(6384):102-105. doi: 10.1126/science.aar7831. Epub 2018 Feb 22.
4
Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins.
Cell. 2018 Feb 8;172(4):771-783.e18. doi: 10.1016/j.cell.2017.12.027. Epub 2018 Jan 18.
5
Establishment of DNA-DNA Interactions by the Cohesin Ring.
Cell. 2018 Jan 25;172(3):465-477.e15. doi: 10.1016/j.cell.2017.12.021. Epub 2018 Jan 18.
6
A pathway for mitotic chromosome formation.
Science. 2018 Feb 9;359(6376). doi: 10.1126/science.aao6135. Epub 2018 Jan 18.
7
Structural Basis of Heterochromatin Formation by Human HP1.
Mol Cell. 2018 Feb 1;69(3):385-397.e8. doi: 10.1016/j.molcel.2017.12.011. Epub 2018 Jan 11.
8
Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming.
Nat Genet. 2018 Feb;50(2):238-249. doi: 10.1038/s41588-017-0030-7. Epub 2018 Jan 15.
9
YY1 Is a Structural Regulator of Enhancer-Promoter Loops.
Cell. 2017 Dec 14;171(7):1573-1588.e28. doi: 10.1016/j.cell.2017.11.008. Epub 2017 Dec 7.
10
A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
EMBO J. 2017 Dec 15;36(24):3600-3618. doi: 10.15252/embj.201798083. Epub 2017 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验