Suppr超能文献

用于序列推荐的深度双向长短期记忆网络

Deep Bi-LSTM Networks for Sequential Recommendation.

作者信息

Zhao Chuanchuan, You Jinguo, Wen Xinxian, Li Xiaowu

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China.

Computer Technology Application Key Lab of Yunnan Province, Kunming 650504, China.

出版信息

Entropy (Basel). 2020 Aug 7;22(8):870. doi: 10.3390/e22080870.

Abstract

Recent years have seen a surge in approaches that combine deep learning and recommendation systems to capture user preference or item interaction evolution over time. However, the most related work only consider the sequential similarity between the items and neglects the item content feature information and the impact difference of interacted items on the next items. This paper introduces the deep bidirectional long short-term memory (LSTM) and self-attention mechanism into the sequential recommender while fusing the information of item sequences and contents. Specifically, we deal with the issues in a three-pronged attack: the improved item embedding, weight update, and the deep bidirectional LSTM preference learning. First, the user-item sequences are embedded into a low-dimensional item vector space representation via Item2vec, and the class label vectors are concatenated for each embedded item vector. Second, the embedded item vectors learn different impact weights of each item to achieve item awareness via self-attention mechanism; the embedded item vectors and corresponding weights are then fed into the bidirectional LSTM model to learn the user preference vectors. Finally, the top similar items in the preference vector space are evaluated to generate the recommendation list for users. By conducting comprehensive experiments, we demonstrate that our model outperforms the traditional recommendation algorithms on Recall@20 and Mean Reciprocal Rank (MRR@20).

摘要

近年来,将深度学习与推荐系统相结合以捕捉用户偏好或项目交互随时间演变的方法激增。然而,最相关的工作仅考虑项目之间的顺序相似性,而忽略了项目内容特征信息以及已交互项目对下一个项目的影响差异。本文在融合项目序列和内容信息的同时,将深度双向长短期记忆(LSTM)和自注意力机制引入到序列推荐器中。具体来说,我们从三个方面来处理这些问题:改进的项目嵌入、权重更新以及深度双向LSTM偏好学习。首先,通过Item2vec将用户-项目序列嵌入到低维项目向量空间表示中,并为每个嵌入的项目向量连接类别标签向量。其次,嵌入的项目向量通过自注意力机制学习每个项目的不同影响权重以实现项目感知;然后将嵌入的项目向量和相应的权重输入到双向LSTM模型中以学习用户偏好向量。最后,在偏好向量空间中评估最相似的项目,为用户生成推荐列表。通过进行全面的实验,我们证明了我们的模型在召回率@20和平均倒数排名(MRR@20)方面优于传统推荐算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b510/7517473/bd12b7dc0067/entropy-22-00870-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验