Suppr超能文献

通过可扩展的、自动化的、社区管理的框架评估 FAIR 成熟度。

Evaluating FAIR maturity through a scalable, automated, community-governed framework.

机构信息

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.

Institute of Data Science, Maastricht University, Maastricht, The Netherlands.

出版信息

Sci Data. 2019 Sep 20;6(1):174. doi: 10.1038/s41597-019-0184-5.

Abstract

Transparent evaluations of FAIRness are increasingly required by a wide range of stakeholders, from scientists to publishers, funding agencies and policy makers. We propose a scalable, automatable framework to evaluate digital resources that encompasses measurable indicators, open source tools, and participation guidelines, which come together to accommodate domain relevant community-defined FAIR assessments. The components of the framework are: (1) Maturity Indicators - community-authored specifications that delimit a specific automatically-measurable FAIR behavior; (2) Compliance Tests - small Web apps that test digital resources against individual Maturity Indicators; and (3) the Evaluator, a Web application that registers, assembles, and applies community-relevant sets of Compliance Tests against a digital resource, and provides a detailed report about what a machine "sees" when it visits that resource. We discuss the technical and social considerations of FAIR assessments, and how this translates to our community-driven infrastructure. We then illustrate how the output of the Evaluator tool can serve as a roadmap to assist data stewards to incrementally and realistically improve the FAIRness of their resources.

摘要

透明的 FAIRness 评估越来越受到广泛利益相关者的要求,从科学家到出版商、资助机构和政策制定者。我们提出了一个可扩展、自动化的框架,以评估数字资源,其中包括可衡量的指标、开源工具和参与准则,这些准则共同适应领域相关的社区定义的 FAIR 评估。该框架的组件包括:(1)成熟度指标 - 社区编写的规范,限定了特定的自动可衡量的 FAIR 行为;(2)合规测试 - 小型 Web 应用程序,用于针对单个成熟度指标测试数字资源;(3)评估器,一个 Web 应用程序,用于注册、组装和针对数字资源应用相关的合规测试集,并提供有关机器访问该资源时“看到”的详细报告。我们讨论了 FAIR 评估的技术和社会考虑因素,以及这如何转化为我们的社区驱动的基础设施。然后,我们说明了评估器工具的输出如何可以作为路线图,帮助数据管理员逐步、现实地提高其资源的 FAIRness。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/6754447/b75a9b3fa48d/41597_2019_184_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验