Suppr超能文献

基于 FAIR 原则的 COVID-19 相关研究数据的可用性和质量:一项元研究。

COVID-19-related research data availability and quality according to the FAIR principles: A meta-research study.

机构信息

National Pain Centre, Department of Anesthesia, McMaster University, Hamilton, ON, Canada.

Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.

出版信息

PLoS One. 2024 Nov 18;19(11):e0313991. doi: 10.1371/journal.pone.0313991. eCollection 2024.

Abstract

BACKGROUND

According to the FAIR principles (Findable, Accessible, Interoperable, and Reusable), scientific research data should be findable, accessible, interoperable, and reusable. The COVID-19 pandemic has led to massive research activities and an unprecedented number of topical publications in a short time. However, no evaluation has assessed whether this COVID-19-related research data has complied with FAIR principles (or FAIRness).

OBJECTIVE

Our objective was to investigate the availability of open data in COVID-19-related research and to assess compliance with FAIRness.

METHODS

We conducted a comprehensive search and retrieved all open-access articles related to COVID-19 from journals indexed in PubMed, available in the Europe PubMed Central database, published from January 2020 through June 2023, using the metareadr package. Using rtransparent, a validated automated tool, we identified articles with links to their raw data hosted in a public repository. We then screened the link and included those repositories that included data specifically for their pertaining paper. Subsequently, we automatically assessed the adherence of the repositories to the FAIR principles using FAIRsFAIR Research Data Object Assessment Service (F-UJI) and rfuji package. The FAIR scores ranged from 1-22 and had four components. We reported descriptive analysis for each article type, journal category, and repository. We used linear regression models to find the most influential factors on the FAIRness of data.

RESULTS

5,700 URLs were included in the final analysis, sharing their data in a general-purpose repository. The mean (standard deviation, SD) level of compliance with FAIR metrics was 9.4 (4.88). The percentages of moderate or advanced compliance were as follows: Findability: 100.0%, Accessibility: 21.5%, Interoperability: 46.7%, and Reusability: 61.3%. The overall and component-wise monthly trends were consistent over the follow-up. Reviews (9.80, SD = 5.06, n = 160), articles in dental journals (13.67, SD = 3.51, n = 3) and Harvard Dataverse (15.79, SD = 3.65, n = 244) had the highest mean FAIRness scores, whereas letters (7.83, SD = 4.30, n = 55), articles in neuroscience journals (8.16, SD = 3.73, n = 63), and those deposited in GitHub (4.50, SD = 0.13, n = 2,152) showed the lowest scores. Regression models showed that the repository was the most influential factor on FAIRness scores (R2 = 0.809).

CONCLUSION

This paper underscored the potential for improvement across all facets of FAIR principles, specifically emphasizing Interoperability and Reusability in the data shared within general repositories during the COVID-19 pandemic.

摘要

背景

根据 FAIR 原则(可发现性、可访问性、互操作性和可重用性),科学研究数据应该是可发现、可访问、互操作和可重用的。COVID-19 大流行导致了大量的研究活动和空前数量的专题出版物在短时间内发表。然而,尚未有评估表明这些与 COVID-19 相关的研究数据是否符合 FAIR 原则(或 FAIRness)。

目的

我们的目的是调查 COVID-19 相关研究中开放数据的可用性,并评估 FAIRness 的遵守情况。

方法

我们进行了全面搜索,从欧洲 PubMed 中央数据库中检索了在 PubMed 中索引的与 COVID-19 相关的所有开放获取文章,这些文章的发表时间从 2020 年 1 月到 2023 年 6 月,使用 metareadr 包。使用 rtransparent,一个经过验证的自动化工具,我们确定了文章链接到他们的原始数据托管在公共存储库中。然后,我们筛选了链接并包含了那些包含特定于他们相关论文的数据的存储库。随后,我们使用 FAIRsFAIR 研究数据对象评估服务(F-UJI)和 rfuji 包自动评估存储库对 FAIR 原则的遵守情况。FAIR 分数范围为 1-22,并有四个组成部分。我们报告了每个文章类型、期刊类别和存储库的描述性分析。我们使用线性回归模型来确定对数据 FAIRness 影响最大的因素。

结果

最终分析共纳入 5700 个 URL,在通用存储库中共享其数据。符合 FAIR 指标的平均(标准偏差,SD)水平为 9.4(4.88)。中度或高级合规的百分比如下:可发现性:100.0%,可访问性:21.5%,互操作性:46.7%,可重用性:61.3%。在随访过程中,整体和组件的月度趋势保持一致。综述(9.80,SD = 5.06,n = 160)、牙科期刊文章(13.67,SD = 3.51,n = 3)和哈佛数据仓库(15.79,SD = 3.65,n = 244)的 FAIRness 得分最高,而信件(7.83,SD = 4.30,n = 55)、神经科学期刊文章(8.16,SD = 3.73,n = 63)和在 GitHub 中存储的文章(4.50,SD = 0.13,n = 2152)得分最低。回归模型表明,存储库是 FAIRness 得分的最主要影响因素(R2 = 0.809)。

结论

本文强调了在 COVID-19 大流行期间,在通用存储库中共享数据的所有 FAIR 原则方面都有改进的潜力,特别是强调了互操作性和可重用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bbd/11573139/a4688398d727/pone.0313991.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验