Clinical Epidemiology Unit, Department of Clinical Sciences Lund, Orthopaedics, Faculty of Medicine, Lund University, Remissgatan 4, 221 85, Lund, Sweden.
Centre for Economic Demography, Lund University, Lund, Sweden.
Qual Life Res. 2020 Jan;29(1):265-274. doi: 10.1007/s11136-019-02303-9. Epub 2019 Sep 20.
To develop a mapping model to estimate EQ-5D-3L from the Knee Injury and Osteoarthritis Outcome Score (KOOS).
The responses to EQ-5D-3L and KOOS questionnaires (n = 40,459 observations) were obtained from the Swedish National anterior cruciate ligament (ACL) Register for patients ≥ 18 years with the knee ACL injury. We used linear regression (LR) and beta-mixture (BM) for direct mapping and the generalized ordered probit model for response mapping (RM). We compared the distribution of the original data to the distributions of the data generated using the estimated models.
Models with individual KOOS subscales performed better than those with the average of KOOS subscale scores (KOOS, KOOS). LR had the poorest performance overall and across the range of disease severity particularly at the extremes of the distribution of severity. Compared with the RM, the BM performed better across the entire range of disease severity except the most severe range (KOOS < 25). Moving from the most to the least disease severity was associated with 0.785 gain in the observed EQ-5D-3L. The corresponding value was 0.743, 0.772 and 0.782 for LR, BM and RM, respectively. LR generated simulated EQ-5D-3L values outside the feasible range. The distribution of simulated data generated from the BM model was almost identical to the original data.
We developed mapping models to estimate EQ-5D-3L from KOOS facilitating application of KOOS in cost-utility analyses. The BM showed superior performance for estimating EQ-5D-3L from KOOS. Further validation of the estimated models in different independent samples is warranted.
开发一种映射模型,以从膝关节损伤和骨关节炎结果评分(KOOS)估算 EQ-5D-3L。
从瑞典全国前交叉韧带(ACL)登记处≥18 岁的膝关节 ACL 损伤患者的 EQ-5D-3L 和 KOOS 问卷的应答中获得了(n=40459 个观测值)。我们使用线性回归(LR)和 beta 混合(BM)进行直接映射,使用广义有序概率模型进行应答映射(RM)。我们比较了原始数据的分布与使用估计模型生成的数据的分布。
使用个体 KOOS 子量表的模型表现优于使用 KOOS 子量表平均分数(KOOS,KOOS)的模型。LR 的整体性能和在疾病严重程度范围内的性能均较差,尤其是在严重程度分布的极端情况下。与 RM 相比,BM 在整个疾病严重程度范围内的表现更好,除了最严重的范围(KOOS<25)。从最严重到最不严重的疾病严重程度与观察到的 EQ-5D-3L 增加 0.785 相关。相应的值分别为 0.743、0.772 和 0.782,分别对应 LR、BM 和 RM。LR 生成的模拟 EQ-5D-3L 值超出了可行范围。从 BM 模型生成的模拟数据的分布几乎与原始数据相同。
我们开发了映射模型,以从 KOOS 估算 EQ-5D-3L,从而促进了 KOOS 在成本效益分析中的应用。BM 显示出从 KOOS 估算 EQ-5D-3L 的卓越性能。需要在不同的独立样本中进一步验证估计模型。