Suppr超能文献

DNA 在 Odijk 区附近纳米通道中的扩展分布。

Extension distribution for DNA confined in a nanochannel near the Odijk regime.

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA.

Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA.

出版信息

J Chem Phys. 2019 Sep 21;151(11):114903. doi: 10.1063/1.5121305.

Abstract

DNA confinement in a nanochannel typically is understood via mapping to the confinement of an equivalent neutral polymer by hard walls. This model has proven to be effective for confinement in relatively large channels where hairpin formation is frequent. An analysis of existing experimental data for Escherichia coli DNA extension in channels smaller than the persistence length, combined with an additional dataset for λ-DNA confined in a 34 nm wide channel, reveals a breakdown in this approach as the channel size approaches the Odijk regime of strong confinement. In particular, the predicted extension distribution obtained from the asymptotic solution to the weakly correlated telegraph model for a confined wormlike chain deviates significantly from the experimental distribution obtained for DNA confinement in the 34 nm channel, and the discrepancy cannot be resolved by treating the alignment fluctuations or the effective channel size as fitting parameters. We posit that the DNA-wall electrostatic interactions, which are sensible throughout a significant fraction of the channel cross section in the Odijk regime, are the source of the disagreement between theory and experiment. Dimensional analysis of the wormlike chain propagator in channel confinement reveals the importance of a dimensionless parameter, reflecting the magnitude of the DNA-wall electrostatic interactions relative to thermal energy, which has not been considered explicitly in the prevailing theories for DNA confinement in a nanochannel.

摘要

DNA 在纳米通道中的限制通常通过映射到等效中性聚合物的限制来理解,该限制由硬壁施加。该模型已被证明在相对较大的通道中限制是有效的,在这些通道中发夹形成很常见。对大肠杆菌 DNA 在小于弛豫长度的通道中延伸的现有实验数据进行分析,结合在 34nm 宽通道中限制的 λ-DNA 的附加数据集,表明当通道尺寸接近强限制的 Odijk 区时,该方法会失效。特别是,从受限蠕虫链的弱相关电报模型的渐近解获得的预测延伸分布与在 34nm 通道中限制的 DNA 获得的实验分布有很大差异,并且不能通过将对齐波动或有效通道尺寸作为拟合参数来解决这种差异。我们假设 DNA-壁静电相互作用,在 Odijk 区的通道横截面的很大一部分中都有意义,是理论与实验之间存在分歧的原因。通道限制中蠕虫链传播子的维度分析揭示了一个无量纲参数的重要性,该参数反映了 DNA-壁静电相互作用相对于热能的大小,这在纳米通道中限制 DNA 的现有理论中并未明确考虑。

相似文献

1
Extension distribution for DNA confined in a nanochannel near the Odijk regime.
J Chem Phys. 2019 Sep 21;151(11):114903. doi: 10.1063/1.5121305.
2
Limitations of the equivalent neutral polymer assumption for theories describing nanochannel-confined DNA.
Phys Rev E. 2020 Jan;101(1-1):012501. doi: 10.1103/PhysRevE.101.012501.
3
Transition between two regimes describing internal fluctuation of DNA in a nanochannel.
PLoS One. 2011 Mar 15;6(3):e16890. doi: 10.1371/journal.pone.0016890.
4
The Backfolded Odijk Regime for Wormlike Chains Confined in Rectangular Nanochannels.
Polymers (Basel). 2016 Mar 14;8(3):79. doi: 10.3390/polym8030079.
6
Extension of DNA in a nanochannel as a rod-to-coil transition.
Phys Rev Lett. 2013 May 17;110(20):208103. doi: 10.1103/PhysRevLett.110.208103. Epub 2013 May 13.
7
Cross-stream migration of flexible molecules in a nanochannel.
Phys Rev Lett. 2006 Jun 9;96(22):224505. doi: 10.1103/PhysRevLett.96.224505. Epub 2006 Jun 8.
9
Conformation and dynamics of DNA confined in slitlike nanofluidic channels.
Phys Rev Lett. 2008 Sep 5;101(10):108303. doi: 10.1103/PhysRevLett.101.108303.
10
Simulations corroborate telegraph model predictions for the extension distributions of nanochannel confined DNA.
Biomicrofluidics. 2019 Aug 8;13(4):044110. doi: 10.1063/1.5109566. eCollection 2019 Jul.

引用本文的文献

1
Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale.
Essays Biochem. 2021 Apr 16;65(1):51-66. doi: 10.1042/EBC20200021.
2
Limitations of the equivalent neutral polymer assumption for theories describing nanochannel-confined DNA.
Phys Rev E. 2020 Jan;101(1-1):012501. doi: 10.1103/PhysRevE.101.012501.

本文引用的文献

1
Simulations corroborate telegraph model predictions for the extension distributions of nanochannel confined DNA.
Biomicrofluidics. 2019 Aug 8;13(4):044110. doi: 10.1063/1.5109566. eCollection 2019 Jul.
2
Measuring the wall depletion length of nanoconfined DNA.
J Chem Phys. 2018 Sep 14;149(10):104901. doi: 10.1063/1.5040458.
3
Self-Avoiding Wormlike Chain Confined in a Cylindrical Tube: Scaling Behavior.
Phys Rev Lett. 2018 Jul 20;121(3):037801. doi: 10.1103/PhysRevLett.121.037801.
4
Distribution of label spacings for genome mapping in nanochannels.
Biomicrofluidics. 2018 Jun 25;12(3):034115. doi: 10.1063/1.5038417. eCollection 2018 May.
5
One-Parameter Scaling Theory for DNA Extension in a Nanochannel.
Phys Rev Lett. 2017 Dec 29;119(26):268102. doi: 10.1103/PhysRevLett.119.268102. Epub 2017 Dec 28.
6
: A Perspective on Polyelectrolyte Solutions.
Macromolecules. 2017 Dec 26;50(24):9528-9560. doi: 10.1021/acs.macromol.7b01929. Epub 2017 Dec 14.
7
Sequence-Dependent Persistence Length of Long DNA.
Phys Rev Lett. 2017 Dec 1;119(22):227802. doi: 10.1103/PhysRevLett.119.227802. Epub 2017 Nov 29.
9
Conformational Properties of a Back-Folding Wormlike Chain Confined in a Cylindrical Tube.
Phys Rev Lett. 2017 Jun 16;118(24):247802. doi: 10.1103/PhysRevLett.118.247802.
10
Wall depletion length of a channel-confined polymer.
Phys Rev E. 2017 Feb;95(2-1):022501. doi: 10.1103/PhysRevE.95.022501. Epub 2017 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验