Oral Surgery Department, School of Dentistry, University of São Paulo, USP, Av. Prof. Lineu Prestes 2227, Cidade Universitária, Butantã, São Paulo, SP 05508-000, Brazil.
Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, UNICAMP, Rua Mendeleiev, 200, BLOCO EE2 C. Universitária, Campinas, SP 13083-970, Brazil.
Dent Mater. 2019 Dec;35(12):1740-1749. doi: 10.1016/j.dental.2019.08.109. Epub 2019 Sep 20.
Bioengineering aims to develop innovative scaffolds to improve cellular activities for tissue regeneration.
To evaluate the biological behavior of human dental pulp stem cells (hDPSCs) seeded onto an experimental polymeric-based scaffold comprising poly-ε-caprolactone/poly (rotaxane).
Adhesion, viability, and proliferation as well as alkaline phosphatase (ALP) activity, mineralized nodule formation (alizarin red assay), and expression of genes related to osteogenic differentiation, including ALP, type 1 collagen alpha 1 (COL1A1), Runt-related transcription factor (Runx-2), and osteocalcin (BGLAP/OCN), were evaluated in hDPSCs seeded onto polymeric scaffolds.
hDPSCs expressed typical levels of mesenchymal stem cell surface markers. Cell growth increased upon cultivation on polymeric blend scaffold and the cells gained osteoblast-like appearance. Fourteen days after seeding hDPSCs on the scaffolds, irrespective to the culture medium used (clonogenic or mineralization medium), the cells presented ALP activity higher than that of control cells grown in clonogenic medium. The cells cultivated in mineralization medium on the scaffold showed significantly higher expression of all genes than the control cells, except for BGLAP gene expression. At 21 days, the group cultivated on the scaffold and mineralization medium showed maximum level of mineralization.
Poly-ε-caprolactone/poly (rotaxane) blend is noncytotoxic to hDPSCs and improved genomic and functional osteogenic differentiation. Thus, poly-ε-caprolactone/poly (rotaxane) blend may serve as a promising bioactive biomaterial for bone tissue bioengineering.
生物工程旨在开发创新支架,以提高细胞活动,促进组织再生。
评估接种在包含聚己内酯/聚(轮烷)的实验性聚合物支架上的人牙髓干细胞(hDPSCs)的生物学行为。
评估接种在聚合物支架上的 hDPSCs 的黏附、活力和增殖以及碱性磷酸酶(ALP)活性、矿化结节形成(茜素红染色)以及与成骨分化相关的基因表达,包括 ALP、Ⅰ型胶原α 1(COL1A1)、 Runt 相关转录因子(Runx-2)和骨钙素(BGLAP/OCN)。
hDPSCs 表达典型的间充质干细胞表面标志物。在聚合物共混支架上培养时,细胞生长增加,细胞获得成骨细胞样外观。在接种 hDPSCs 后 14 天,无论使用何种培养基(集落形成或矿化培养基),支架上接种的细胞的 ALP 活性均高于在集落形成培养基中生长的对照细胞。在支架上用矿化培养基培养的细胞的所有基因表达均显著高于对照细胞,除 BGLAP 基因表达外。在第 21 天,在支架和矿化培养基上培养的细胞显示出最大的矿化水平。
聚己内酯/聚(轮烷)共混物对 hDPSCs 无细胞毒性,并改善了基因组和功能性成骨分化。因此,聚己内酯/聚(轮烷)共混物可用作骨组织工程的有前途的生物活性生物材料。