Suppr超能文献

基于多压策略和全乳扫描系统的大应变量三维体内超声弹性成像技术。

Large-Strain 3-D in Vivo Breast Ultrasound Strain Elastography Using a Multi-compression Strategy and a Whole-Breast Scanning System.

机构信息

Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.

Ultrasound Division, GE Healthcare, Wauwatosa, Wisconsin, USA.

出版信息

Ultrasound Med Biol. 2019 Dec;45(12):3145-3159. doi: 10.1016/j.ultrasmedbio.2019.08.013. Epub 2019 Sep 21.

Abstract

Non-linear mechanical properties of breast tissue can be employed to diagnose and differentiate breast tumors. To obtain such non-linear mechanical properties, it is necessary to track tissue motion under large deformation. In this study, a multi-compression strategy was utilized to produce large tissue deformation, and a method to estimate 3-D motion of tissue under large deformation was introduced. Given multiple volumes of ultrasound data, the proposed method first estimates volume-to-volume incremental displacements using a 3-D region-growing motion-tracking method. Then, possible outliers among all incremental displacements are removed to avoid error accumulation. Once large displacement errors have been removed, all incremental displacements are registered together to obtain accumulated displacements under large tissue deformation (e.g., >10%). The proposed method was tested with one set of in vivo tumor-bearing ultrasound data acquired from a human subject. A total of 10 small-strain deformation steps were performed to obtain the final accumulated displacement field, in which the breast lesion and its surrounding were deformed by approximately 6% and 16%, respectively. The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the elasticity images obtained with the proposed method were all higher than those obtained with a 2-D tracking method. Furthermore, in three orthogonal views of accumulated axial strain images, the breast lesion was clearly visible with good correspondence between the axial strain and B-mode images.

摘要

乳腺组织的非线性力学特性可用于诊断和区分乳腺肿瘤。为了获得这些非线性力学特性,有必要跟踪大变形下的组织运动。在本研究中,采用多压缩策略产生大的组织变形,并引入了一种估计大变形下组织三维运动的方法。对于多组超声数据,该方法首先使用三维区域生长运动跟踪方法估计体素间的增量位移。然后,去除所有增量位移中的异常值,以避免误差累积。一旦消除了大位移误差,就可以将所有增量位移一起注册,以获得大组织变形(例如,>10%)下的累积位移。该方法在一组从人体获得的肿瘤超声数据上进行了测试。共进行了 10 次小应变变形步骤,以获得最终的累积位移场,其中乳腺病变及其周围组织的变形分别约为 6%和 16%。与二维跟踪方法相比,所提出方法获得的弹性图像的对比度噪声比(CNR)和信噪比(SNR)均更高。此外,在累积轴向应变图像的三个正交视图中,乳腺病变清晰可见,轴向应变与 B 模式图像之间具有良好的对应关系。

相似文献

1
Large-Strain 3-D in Vivo Breast Ultrasound Strain Elastography Using a Multi-compression Strategy and a Whole-Breast Scanning System.
Ultrasound Med Biol. 2019 Dec;45(12):3145-3159. doi: 10.1016/j.ultrasmedbio.2019.08.013. Epub 2019 Sep 21.
2
A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
Ultrasound Med Biol. 2018 Aug;44(8):1638-1653. doi: 10.1016/j.ultrasmedbio.2018.04.011. Epub 2018 May 18.
3
Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
Ultrason Imaging. 2017 Nov;39(6):369-392. doi: 10.1177/0161734617712238. Epub 2017 Jun 6.
4
3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.
Ultrasound Med Biol. 2014 Jul;40(7):1490-502. doi: 10.1016/j.ultrasmedbio.2014.02.002. Epub 2014 Apr 24.
5
A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
Med Phys. 2023 Apr;50(4):2176-2194. doi: 10.1002/mp.16110. Epub 2022 Dec 8.
6
A coupled subsample displacement estimation method for ultrasound-based strain elastography.
Phys Med Biol. 2015 Nov 7;60(21):8347-64. doi: 10.1088/0031-9155/60/21/8347. Epub 2015 Oct 12.
7
3D estimation of soft biological tissue deformation from radio-frequency ultrasound volume acquisitions.
Med Image Anal. 2009 Feb;13(1):116-27. doi: 10.1016/j.media.2008.07.003. Epub 2008 Jul 30.
9
A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise: A Feasibility Study for Ultrasound Breast Elastography.
Ultrason Imaging. 2015 Oct;37(4):277-93. doi: 10.1177/0161734614561128. Epub 2014 Nov 30.
10

引用本文的文献

1
Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue.
Nat Biomed Eng. 2023 Oct;7(10):1321-1334. doi: 10.1038/s41551-023-01038-w. Epub 2023 May 1.
3
A Non-invasive Method to Estimate the Stress-Strain Curve of Soft Tissue Using Ultrasound Elastography.
Ultrasound Med Biol. 2022 May;48(5):786-807. doi: 10.1016/j.ultrasmedbio.2021.12.016. Epub 2022 Feb 13.

本文引用的文献

1
A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
Ultrasound Med Biol. 2018 Aug;44(8):1638-1653. doi: 10.1016/j.ultrasmedbio.2018.04.011. Epub 2018 May 18.
2
Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
Ultrason Imaging. 2017 Nov;39(6):369-392. doi: 10.1177/0161734617712238. Epub 2017 Jun 6.
3
WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast.
Ultrasound Med Biol. 2015 May;41(5):1148-60. doi: 10.1016/j.ultrasmedbio.2015.03.008. Epub 2015 Mar 18.
4
3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.
Ultrasound Med Biol. 2014 Jul;40(7):1490-502. doi: 10.1016/j.ultrasmedbio.2014.02.002. Epub 2014 Apr 24.
5
Variance and covariance of accumulated displacement estimates.
Ultrason Imaging. 2013 Apr;35(2):90-108. doi: 10.1177/0161734613479246.
6
Nonlinear characterization of breast cancer using multi-compression 3D ultrasound elastography in vivo.
Ultrasonics. 2013 Jul;53(5):979-91. doi: 10.1016/j.ultras.2013.01.005. Epub 2013 Jan 23.
7
A nonlinear elasticity phantom containing spherical inclusions.
Phys Med Biol. 2012 Aug 7;57(15):4787-804. doi: 10.1088/0031-9155/57/15/4787. Epub 2012 Jul 6.
8
Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis.
IEEE Trans Med Imaging. 2012 Aug;31(8):1628-37. doi: 10.1109/TMI.2012.2201497. Epub 2012 May 30.
9
Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility.
Phys Med Biol. 2009 Mar 7;54(5):1191-207. doi: 10.1088/0031-9155/54/5/006. Epub 2009 Jan 30.
10
Reconstructive elasticity imaging for large deformations.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(3):523-35. doi: 10.1109/58.764839.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验