Morgridge Institute for Research, Madison, United States.
RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States.
Elife. 2019 Sep 24;8:e48958. doi: 10.7554/eLife.48958.
Tapeworms grow at rates rivaling the fastest-growing metazoan tissues. To propagate they shed large parts of their body; to replace these lost tissues they regenerate proglottids (segments) as part of normal homeostasis. Their remarkable growth and regeneration are fueled by adult somatic stem cells that have yet to be characterized molecularly. Using the rat intestinal tapeworm, , we find that regenerative potential is regionally limited to the neck, where head-dependent extrinsic signals create a permissive microenvironment for stem cell-driven regeneration. Using transcriptomic analyses and RNA interference, we characterize and functionally validate regulators of tapeworm growth and regeneration. We find no evidence that stem cells are restricted to the regeneration-competent neck. Instead, lethally irradiated tapeworms can be rescued when cells from either regeneration-competent or regeneration-incompetent regions are transplanted into the neck. Together, the head and neck tissues provide extrinsic cues that regulate stem cells, enabling region-specific regeneration in this parasite.
绦虫的生长速度可与最快生长的后生动物组织相媲美。为了繁殖,它们会脱落身体的大部分组织;为了替换这些丢失的组织,它们会在正常的体内平衡中再生节片(片段)。它们显著的生长和再生能力是由尚未在分子水平上表征的成年体腔干细胞提供的。使用大鼠肠道绦虫,我们发现再生潜能在区域上仅限于颈部,在那里头部依赖的外在信号为干细胞驱动的再生创造了一个许可的微环境。通过转录组分析和 RNA 干扰,我们对绦虫生长和再生的调控因子进行了特征描述和功能验证。我们没有发现证据表明干细胞仅限于具有再生能力的颈部。相反,当来自具有或不具有再生能力的区域的细胞被移植到颈部时,致命辐射的绦虫可以被挽救。总的来说,头部和颈部组织提供了调节干细胞的外在线索,使这种寄生虫能够进行特定区域的再生。