Suppr超能文献

用于早期识别轻度认知障碍患者的前额叶皮质神经退行性生物标志物评估:一项功能近红外光谱研究

Evaluation of Neural Degeneration Biomarkers in the Prefrontal Cortex for Early Identification of Patients With Mild Cognitive Impairment: An fNIRS Study.

作者信息

Yang Dalin, Hong Keum-Shik, Yoo So-Hyeon, Kim Chang-Soek

机构信息

School of Mechanical Engineering, Pusan National University, Busan, South Korea.

Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea.

出版信息

Front Hum Neurosci. 2019 Sep 6;13:317. doi: 10.3389/fnhum.2019.00317. eCollection 2019.

Abstract

Mild cognitive impairment (MCI), a condition characterizing poor cognition, is associated with aging and depicts early symptoms of severe cognitive impairment, known as Alzheimer's disease (AD). Meanwhile, early detection of MCI can prevent progression to AD. A great deal of research has been performed in the past decade on MCI detection. However, availability of biomarkers for MCI detection requires greater attention. In our study, we evaluated putative and reliable biomarkers for diagnosing MCI by performing different mental tasks (i.e., back task, Stroop task, and verbal fluency task) using functional near-infrared spectroscopy (fNIRS) signals on a group of 15 MCI patients and 9 healthy control (HC). The 15 digital biomarkers (i.e., five means, seven slopes, peak, skewness, and kurtosis) and two image biomarkers (-map, correlation map) in the prefrontal cortex (PFC) (i.e., left PFC, middle PFC, and right PFC) between the MCI and HC groups were investigated by the statistical analysis, linear discriminant analysis (LDA), and convolutional neural network (CNN) individually. The results reveal that the statistical analysis using digital biomarkers (with a -value < 0.05) could not distinguish the MCI patients from the HC over 60% accuracy. Therefore, the current statistical analysis needs to be improved to be used for diagnosing the MCI patients. The best accuracy with LDA was 76.67% with the -back and Stroop tasks. However, the CNN classification results trained by image biomarkers showed a high accuracy. In particular, the CNN results trained via -maps revealed the best accuracy (90.62%) with the back task, whereas the CNN result trained by the correlation maps was 85.58% with the -back task. Also, the results illustrated that investigating the sub-regions (i.e., right, middle, left) of the PFC for detecting MCI would be better than examining the whole PFC. The -map (or/and the correlation map) is conclusively recommended as an image biomarker for early detection of AD. The combination of CNN and image biomarkers can provide a reliable clinical tool for diagnosing MCI patients.

摘要

轻度认知障碍(MCI)是一种认知能力较差的状况,与衰老相关,是严重认知障碍(即阿尔茨海默病,AD)的早期症状。同时,早期检测MCI可预防其发展为AD。在过去十年中,针对MCI检测开展了大量研究。然而,用于MCI检测的生物标志物的可用性需要更多关注。在我们的研究中,我们通过对15名MCI患者和9名健康对照(HC)使用功能近红外光谱(fNIRS)信号执行不同的心理任务(即反向任务、斯特鲁普任务和言语流畅性任务),评估了用于诊断MCI的假定且可靠的生物标志物。通过统计分析、线性判别分析(LDA)和卷积神经网络(CNN)分别研究了MCI组和HC组之间前额叶皮层(PFC)(即左PFC、中PFC和右PFC)中的15种数字生物标志物(即五个均值、七个斜率、峰值、偏度和峰度)和两种图像生物标志物(-图、相关图)。结果表明,使用数字生物标志物进行统计分析(p值<0.05)无法以超过60%的准确率区分MCI患者和HC。因此,当前的统计分析需要改进以用于诊断MCI患者。LDA在反向和斯特鲁普任务中的最佳准确率为76.67%。然而,通过图像生物标志物训练的CNN分类结果显示出较高的准确率。特别是,通过-图训练的CNN结果在反向任务中显示出最佳准确率(90.62%),而通过相关图训练的CNN结果在反向任务中的准确率为85.58%。此外,结果表明,研究PFC的子区域(即右、中、左)以检测MCI比检查整个PFC更好。最终推荐将-图(或/和相关图)作为AD早期检测的图像生物标志物。CNN和图像生物标志物的组合可为诊断MCI患者提供可靠的临床工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验