Suppr超能文献

神经网络模型中的双稳态放电模式

Bistable Firing Pattern in a Neural Network Model.

作者信息

Protachevicz Paulo R, Borges Fernando S, Lameu Ewandson L, Ji Peng, Iarosz Kelly C, Kihara Alexandre H, Caldas Ibere L, Szezech Jose D, Baptista Murilo S, Macau Elbert E N, Antonopoulos Chris G, Batista Antonio M, Kurths Jürgen

机构信息

Graduate in Science Program-Physics, State University of Ponta Grossa, Ponta Grossa, Brazil.

Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil.

出版信息

Front Comput Neurosci. 2019 Apr 5;13:19. doi: 10.3389/fncom.2019.00019. eCollection 2019.

Abstract

Excessively high, neural synchronization has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronization mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronization in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model. In this framework, we verify that the decrease in the influence of inhibition can generate synchronization originating from a pattern of desynchronized spikes. The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist. We verify that, for parameters in the bistability regime, a square current pulse can trigger excessively high (abnormal) synchronization, a process that can reproduce features of epileptic seizures. Then, we show that it is possible to suppress such abnormal synchronization by applying a small-amplitude external current on > 10% of the neurons in the network. Our results demonstrate that external electrical stimulation not only can trigger synchronous behavior, but more importantly, it can be used as a means to reduce abnormal synchronization and thus, control or treat effectively epileptic seizures.

摘要

过高的神经同步与癫痫发作有关,癫痫是全球最常见的脑部疾病之一。因此,更好地理解神经同步机制有助于控制甚至治疗癫痫。在本文中,我们研究了一个随机网络中的神经同步,其中节点是具有兴奋性和抑制性突触的神经元,每个节点的神经活动由自适应指数积分发放模型提供。在此框架下,我们验证了抑制作用影响的降低会产生源自去同步尖峰模式的同步。通过改变突触耦合诱导的从去同步尖峰到同步活动爆发的转变,由于存在双稳态(异常(过高同步)状态)而出现在一个滞后环中。我们验证了,对于双稳态区域中的参数,一个方波电流脉冲可以触发过高(异常)同步,这一过程可以重现癫痫发作的特征。然后,我们表明通过在网络中超过10%的神经元上施加小幅度外部电流,可以抑制这种异常同步。我们的结果表明,外部电刺激不仅可以触发同步行为,更重要的是,它可以作为一种减少异常同步的手段,从而有效控制或治疗癫痫发作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00e/6460289/da7f6f8957a2/fncom-13-00019-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验