Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Nanoscale. 2019 Oct 3;11(38):17920-17930. doi: 10.1039/c9nr05526f.
The combination of scanning probe microscopy and ambient pressure X-ray photoelectron spectroscopy opens up new perspectives for the study of combined surface chemical, electrochemical and electromechanical properties at the nanoscale, providing both nanoscale resolution of physical information and the chemical sensitivity required to identify surface species and bulk ionic composition. In this work, we determine the nature and evolution over time of surface chemical species obtained after water-mediated redox reactions on Pb(Zr0.2,Ti0.8)O3 thin films with opposite as-grown polarization states. Starting with intrinsically different surface chemical composition on the oppositely polarized films (as a result of their ferroelectric-dominated interaction with environmental water), we identify the reversible and irreversible electrochemical reactions under an external electric field, distinguishing switching and charging events. We find that while reversible ionic displacements upon polarization switching dominate screening in the bulk of the sample, polarization dependent irreversible redox reactions determine surface chemical composition, which reveals itself as a characteristic fingerprint of the ferroelectric polarization switching history.
扫描探针显微镜和常压 X 射线光电子能谱的组合为研究纳米尺度上的组合表面化学、电化学和机电性能开辟了新的视角,提供了物理信息的纳米分辨率以及识别表面物种和体相离子组成所需的化学灵敏度。在这项工作中,我们确定了在具有相反初始极化状态的 Pb(Zr0.2,Ti0.8)O3 薄膜上水介导的氧化还原反应后获得的表面化学物质的性质和随时间的演变。从具有不同初始表面化学组成的相反极化薄膜开始(这是由于它们与环境水的铁电主导相互作用所致),我们在外部电场下识别可逆和不可逆的电化学反应,区分开关和充电事件。我们发现,虽然极化开关时的可逆离子位移主导了样品体相的屏蔽,但与极化相关的不可逆氧化还原反应决定了表面化学组成,这揭示了表面化学组成是铁电极化开关历史的特征指纹。