Suppr超能文献

黏膜免疫接种 pH 响应性纳米颗粒疫苗诱导保护性 CD8 肺驻留记忆 T 细胞。

Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8 Lung-Resident Memory T Cells.

机构信息

Department of Biomedical Engineering , Vanderbilt University , Nashville , Tennessee 37235 , United States.

Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States.

出版信息

ACS Nano. 2019 Oct 22;13(10):10939-10960. doi: 10.1021/acsnano.9b00326. Epub 2019 Oct 4.

Abstract

Tissue-resident memory T cells (T) patrol nonlymphoid organs and provide superior protection against pathogens that commonly infect mucosal and barrier tissues, such as the lungs, intestine, liver, and skin. Thus, there is a need for vaccine technologies that can induce a robust, protective T response in these tissues. Nanoparticle (NP) vaccines offer important advantages over conventional vaccines; however, there has been minimal investigation into the design of NP-based vaccines for eliciting T responses. Here, we describe a pH-responsive polymeric nanoparticle vaccine for generating antigen-specific CD8 T cells in the lungs. With a single intranasal dose, the NP vaccine elicited airway- and lung-resident CD8 T cells and protected against respiratory virus challenge in both sublethal (vaccinia) and lethal (influenza) infection models for up to 9 weeks after immunization. In elucidating the contribution of material properties to the resulting T response, we found that the pH-responsive activity of the carrier was important, as a structurally analogous non-pH-responsive control carrier elicited significantly fewer lung-resident CD8 T cells. We also demonstrated that dual-delivery of protein antigen and nucleic acid adjuvant on the same NP substantially enhanced the magnitude, functionality, and longevity of the antigen-specific CD8 T response in the lungs. Compared to administration of soluble antigen and adjuvant, the NP also mediated retention of vaccine cargo in pulmonary antigen-presenting cells (APCs), enhanced APC activation, and increased production of T-related cytokines. Overall, these data suggest a promising vaccine platform technology for rapid generation of protective CD8 T cells in the lungs.

摘要

组织驻留记忆 T 细胞(T 细胞)在非淋巴器官中巡逻,并为常见感染黏膜和屏障组织(如肺、肠、肝和皮肤)的病原体提供卓越的保护。因此,需要开发能够在这些组织中诱导强大、保护性 T 细胞反应的疫苗技术。纳米颗粒(NP)疫苗相对于传统疫苗具有重要优势;然而,对于设计基于 NP 的疫苗以引发 T 细胞反应的研究甚少。在这里,我们描述了一种用于在肺部产生抗原特异性 CD8 T 细胞的 pH 响应性聚合物纳米颗粒疫苗。单次鼻腔内给药,NP 疫苗可诱导气道和肺驻留 CD8 T 细胞,并在接种疫苗后长达 9 周内保护免受亚致死(牛痘)和致死(流感)感染模型中的呼吸道病毒挑战。在阐明材料特性对产生的 T 细胞反应的贡献时,我们发现载体的 pH 响应活性很重要,因为结构类似的非 pH 响应对照载体可诱导的肺驻留 CD8 T 细胞明显减少。我们还证明,在相同的 NP 上双重递送蛋白抗原和核酸佐剂可大大增强肺部抗原特异性 CD8 T 细胞反应的幅度、功能和持久性。与施用可溶性抗原和佐剂相比,NP 还介导疫苗货物在肺部抗原呈递细胞(APC)中的保留、增强 APC 激活和增加 T 相关细胞因子的产生。总体而言,这些数据表明这是一种有前途的肺部保护性 CD8 T 细胞快速生成的疫苗平台技术。

相似文献

1
Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8 Lung-Resident Memory T Cells.
ACS Nano. 2019 Oct 22;13(10):10939-10960. doi: 10.1021/acsnano.9b00326. Epub 2019 Oct 4.
2
CCR2 Regulates Vaccine-Induced Mucosal T-Cell Memory to Influenza A Virus.
J Virol. 2021 Jul 12;95(15):e0053021. doi: 10.1128/JVI.00530-21.
4
OVX836 Heptameric Nucleoprotein Vaccine Generates Lung Tissue-Resident Memory CD8+ T-Cells for Cross-Protection Against Influenza.
Front Immunol. 2021 Jun 10;12:678483. doi: 10.3389/fimmu.2021.678483. eCollection 2021.
7
Zymosan by-passes the requirement for pulmonary antigen encounter in lung tissue-resident memory CD8 T cell development.
Mucosal Immunol. 2019 Mar;12(2):403-412. doi: 10.1038/s41385-018-0124-2. Epub 2019 Jan 21.
10
CD4 T Cells Following Infection and Immunization: Implications for More Effective Vaccine Design.
Front Immunol. 2018 Aug 10;9:1860. doi: 10.3389/fimmu.2018.01860. eCollection 2018.

引用本文的文献

2
Nanovaccines empowering CD8 T cells: a precision strategy to enhance cancer immunotherapy.
Theranostics. 2025 Feb 10;15(7):3098-3121. doi: 10.7150/thno.107856. eCollection 2025.
3
Immunologically effective biomaterials-enhanced vaccines against infection of pathogenic microorganisms.
Biosaf Health. 2022 Dec 2;5(1):45-61. doi: 10.1016/j.bsheal.2022.11.002. eCollection 2023 Feb.
4
Tissue-Resident Memory CD8+ T Cells: Differentiation, Phenotypic Heterogeneity, Biological Function, Disease, and Therapy.
MedComm (2020). 2025 Mar 10;6(3):e70132. doi: 10.1002/mco2.70132. eCollection 2025 Mar.
5
Potentiation of immune checkpoint blockade with a pH-sensitizer as monitored in two pre-clinical tumor models with acidoCEST MRI.
Br J Cancer. 2025 May;132(8):744-753. doi: 10.1038/s41416-025-02962-1. Epub 2025 Feb 24.
6
Respiratory delivered vaccines: Current status and perspectives in rational formulation design.
Acta Pharm Sin B. 2024 Dec;14(12):5132-5160. doi: 10.1016/j.apsb.2024.08.026. Epub 2024 Nov 4.
7
Mucosal immune response in biology, disease prevention and treatment.
Signal Transduct Target Ther. 2025 Jan 8;10(1):7. doi: 10.1038/s41392-024-02043-4.
8
Advancements in Nanoparticle-Based Adjuvants for Enhanced Tuberculosis Vaccination: A Review.
Vaccines (Basel). 2024 Nov 27;12(12):1335. doi: 10.3390/vaccines12121335.
9
Global research trends in the relationship between influenza and CD4 T/CD8 T cells: A bibliometric analysis.
Hum Vaccin Immunother. 2024 Dec 31;20(1):2435644. doi: 10.1080/21645515.2024.2435644. Epub 2024 Dec 16.
10
Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles.
Heliyon. 2024 Oct 30;10(21):e39917. doi: 10.1016/j.heliyon.2024.e39917. eCollection 2024 Nov 15.

本文引用的文献

1
Why Are CD8 T Cell Epitopes of Human Influenza A Virus Conserved?
J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.01534-18. Print 2019 Mar 15.
2
Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines?
Front Immunol. 2018 Dec 13;9:2874. doi: 10.3389/fimmu.2018.02874. eCollection 2018.
3
Tissue-resident memory CD8 T cells promote melanoma-immune equilibrium in skin.
Nature. 2019 Jan;565(7739):366-371. doi: 10.1038/s41586-018-0812-9. Epub 2018 Dec 31.
6
The continual threat of influenza virus infections at the human-animal interface: What is new from a one health perspective?
Evol Med Public Health. 2018 Sep 7;2018(1):192-198. doi: 10.1093/emph/eoy013. eCollection 2018.
8
Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines.
Biomaterials. 2018 Nov;182:82-91. doi: 10.1016/j.biomaterials.2018.07.052. Epub 2018 Jul 30.
9
Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis.
Nat Med. 2018 Jul;24(7):986-993. doi: 10.1038/s41591-018-0078-7. Epub 2018 Jun 25.
10
Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells.
Front Immunol. 2018 May 31;9:1214. doi: 10.3389/fimmu.2018.01214. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验