Suppr超能文献

通过定量蛋白质组学解码先天免疫系统的通讯模式。

Decoding communication patterns of the innate immune system by quantitative proteomics.

机构信息

Molecular and Cellular Biology Department, University of Guelph, Guelph, Ontario, Canada.

Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.

出版信息

J Leukoc Biol. 2019 Dec;106(6):1221-1232. doi: 10.1002/JLB.2RI0919-302R. Epub 2019 Sep 26.

Abstract

The innate immune system is a collective network of cell types involved in cell recruitment and activation using a robust and refined communication system. Engagement of receptor-mediated intracellular signaling initiates communication cascades by conveying information about the host cell status to surrounding cells for surveillance and protection. Comprehensive profiling of innate immune cells is challenging due to low cell numbers, high dynamic range of the cellular proteome, low abundance of secreted proteins, and the release of degradative enzymes (e.g., proteases). However, recent advances in mass spectrometry-based proteomics provides the capability to overcome these limitations through profiling the dynamics of cellular processes, signaling cascades, post-translational modifications, and interaction networks. Moreover, integration of technologies and molecular datasets provide a holistic view of a complex and intricate network of communications underscoring host defense and tissue homeostasis mechanisms. In this Review, we explore the diverse applications of mass spectrometry-based proteomics in innate immunity to define communication patterns of the innate immune cells during health and disease. We also provide a technical overview of mass spectrometry-based proteomic workflows, with a focus on bottom-up approaches, and we present the emerging role of proteomics in immune-based drug discovery while providing a perspective on new applications in the future.

摘要

先天免疫系统是一个由细胞类型组成的复杂网络,通过使用强大而精细的通讯系统参与细胞募集和激活。受体介导的细胞内信号的参与通过将有关宿主细胞状态的信息传递给周围细胞来启动通讯级联,以进行监视和保护。由于先天免疫细胞数量少、细胞蛋白质组的动态范围大、分泌蛋白的丰度低以及降解酶(例如蛋白酶)的释放,因此对先天免疫细胞进行全面分析具有挑战性。但是,基于质谱的蛋白质组学的最新进展提供了通过对细胞过程、信号级联、翻译后修饰和相互作用网络的动态进行分析来克服这些限制的能力。此外,技术和分子数据集的集成提供了宿主防御和组织动态平衡机制下复杂而复杂的通讯网络的整体视图。在这篇综述中,我们探讨了基于质谱的蛋白质组学在先天免疫中的多种应用,以定义健康和疾病期间先天免疫细胞的通讯模式。我们还提供了基于质谱的蛋白质组学工作流程的技术概述,重点是自上而下的方法,并介绍了蛋白质组学在免疫为基础的药物发现中的新兴作用,同时展望了未来的新应用。

相似文献

4
Protein interaction networks in innate immunity.天然免疫中的蛋白质相互作用网络。
Trends Immunol. 2013 Dec;34(12):610-9. doi: 10.1016/j.it.2013.05.002. Epub 2013 Jul 2.

引用本文的文献

5
Current genetic diagnostics in inborn errors of immunity.当前免疫缺陷病的基因诊断
Front Pediatr. 2024 Apr 10;12:1279112. doi: 10.3389/fped.2024.1279112. eCollection 2024.
7
Impact of Lysine Succinylation on the Biology of Fungi.赖氨酸琥珀酰化对真菌生物学的影响
Curr Issues Mol Biol. 2024 Jan 23;46(2):1020-1046. doi: 10.3390/cimb46020065.

本文引用的文献

2
Quantifying the impact of public omics data.量化公共组学数据的影响。
Nat Commun. 2019 Aug 5;10(1):3512. doi: 10.1038/s41467-019-11461-w.
9
Regulatory Networks Involving STATs, IRFs, and NFκB in Inflammation.炎症中的 STATs、IRFs 和 NFκB 调控网络。
Front Immunol. 2018 Nov 13;9:2542. doi: 10.3389/fimmu.2018.02542. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验