Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
Laboratory of Biomolecular Modelling and Design, Department of Chemistry, University of Leuven, Celestijnenlaan 200G, 3001, Heverlee, Belgium.
Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.
A high throughput single-molecule method for identifying peptides and sequencing proteins based on nanopores could reduce costs and increase speeds of sequencing, allow the fabrication of portable home-diagnostic devices, and permit the characterization of low abundance proteins and heterogeneity in post-translational modifications. Here we engineer the size of Fragaceatoxin C (FraC) biological nanopore to allow the analysis of a wide range of peptide lengths. Ionic blockades through engineered nanopores distinguish a variety of peptides, including two peptides differing only by the substitution of alanine with glutamate. We also find that at pH 3.8 the depth of the peptide current blockades scales with the mass of the peptides irrespectively of the chemical composition of the analyte. Hence, this work shows that FraC nanopores allow direct readout of the mass of single peptide in solution, which is a crucial step towards the developing of a real-time and single-molecule protein sequencing device.
一种基于纳米孔的高通量单分子肽和蛋白质测序方法可以降低成本和提高测序速度,允许制造便携式家庭诊断设备,并允许对低丰度蛋白质和翻译后修饰的异质性进行表征。在这里,我们设计了 Fragaceatoxin C(FraC)生物纳米孔的大小,以允许分析各种不同长度的肽。通过工程纳米孔的离子阻塞可以区分多种肽,包括仅通过将丙氨酸替换为谷氨酸而有所不同的两种肽。我们还发现,在 pH 值为 3.8 时,肽电流阻塞的深度与肽的质量成正比,而与分析物的化学成分无关。因此,这项工作表明 FraC 纳米孔允许直接读取溶液中单肽的质量,这是开发实时单分子蛋白质测序设备的关键步骤。