Ingenuity Lab, Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada.
Southern Illinois University, 1265 Lincoln Drive, Carbondale, IL 62901, USA.
Acta Biomater. 2019 Dec;100:244-254. doi: 10.1016/j.actbio.2019.09.032. Epub 2019 Sep 23.
Glaucoma is a leading cause of irreversible blindness worldwide. Current treatments of glaucoma involve lowering the IOP by means of decreasing aqueous humor production or increasing non-trabecular aqueous humor outflow with the help of IOP-lowering eye drops, nanotechnology enabled glaucoma drainage implants, and trabeculectomy. However, there is currently no effective and permanent cure for this disease. In order to investigate new therapeutic strategies, three dimensional (3D) biomimetic trabecular meshwork (TM) models are in demand. Therefore, we adapted MAX8B, a peptide hydrogel system to bioengineer a 3D trabecular meshwork scaffold. We assessed mechanical and bio-instructive properties of this engineered tissue matrix by using rheological analysis, 3D cell culture and imaging techniques. The scaffold material exhibited shear-thinning ability and biocompatibility for proper hTM growth and proliferation indicating a potential utilization as an injectable implant. Additionally, by using a perfusion system, MAX8B scaffold was tested as an in vitro platform for investigating the effect of Dexamethasone (Dex) on trabecular meshwork outflow facility. The physiological response of hTM cells within the scaffold to Dex treatment clearly supported the effectiveness of this 3D model as a drug-testing platform, which can accelerate discovery of new therapeutic targets for glaucoma. STATEMENT OF SIGNIFICANCE: Artificial 3D-TM (3-dimentional Trabecular Meshwork) developed here with hTM (human TM) cells seeded on peptide-hydrogel scaffolds exhibits the mechanical strength and physiological properties mimicking the native TM tissue. Besides serving a novel and effective 3D-TM model, the MAX8B hydrogel could potentially function as an injectable trabecular meshwork implant.
青光眼是全球范围内导致不可逆性失明的主要原因。目前的青光眼治疗方法包括通过降低眼内压来减少房水的产生或增加非小梁性房水流出,方法是使用降眼压眼药水、纳米技术增强的青光眼引流植入物和小梁切除术。然而,目前这种疾病还没有有效的永久治愈方法。为了研究新的治疗策略,需要三维(3D)仿生小梁网(TM)模型。因此,我们采用 MAX8B 肽水凝胶系统来生物工程构建 3D 小梁网支架。我们通过流变分析、3D 细胞培养和成像技术评估了这种工程组织基质的机械和生物指导特性。支架材料表现出剪切稀化能力和生物相容性,适合 hTM 的生长和增殖,表明其作为可注射植入物的潜在用途。此外,通过使用灌注系统,MAX8B 支架被测试作为体外平台,以研究地塞米松(Dex)对小梁网流出功能的影响。支架内 hTM 细胞对 Dex 处理的生理反应清楚地支持了这种 3D 模型作为药物测试平台的有效性,这可以加速发现治疗青光眼的新治疗靶点。
这里用 MAX8B 肽水凝胶支架培养的人 TM 细胞构建的人工 3D-TM(三维小梁网)具有模拟天然 TM 组织的机械强度和生理特性。除了作为一种新型有效的 3D-TM 模型外,MAX8B 水凝胶还可能作为一种可注射的小梁网植入物发挥作用。