Suppr超能文献

高通量微流控微吸管抽吸装置,用于探测完整细胞中依赖时间尺度的核力学。

High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.

机构信息

Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.

Laboratoire MSSMat UMR CNRS 8579, CentraleSupelec, Université Paris-Saclay, France.

出版信息

Lab Chip. 2019 Nov 7;19(21):3652-3663. doi: 10.1039/c9lc00444k. Epub 2019 Sep 27.

Abstract

The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.

摘要

细胞核的力学特性在许多生物学过程中被越来越多地认为是至关重要的。细胞核的可变形性决定了免疫细胞和癌细胞穿过组织和内皮细胞层的迁移能力,而细胞核力学性质的变化可以作为癌症进展和干细胞分化等过程中的新型生物标志物。然而,目前测量核粘弹性力学特性的技术往往耗时较长,一次只能探测一个细胞,或者需要昂贵的、高度专业化的设备。此外,许多当前的测定方法没有测量具有粘弹性材料特征的时变特性。在这里,我们提出了一种易于使用的微流控装置,该装置应用了已建立的微管吸吮方法,适用于并行测量多个细胞。该装置设计允许快速加载和清洗细胞进行测量,并最大限度地减少大颗粒或细胞团堵塞。与半自动图像分析流水线相结合,微流控装置方法可显著提高实验通量。我们通过将设备中的流体力学计算模型与实验测量的流体流动进行比较,验证了实验平台的有效性。此外,我们还对缺乏核膜蛋白 lamin A/C 的细胞和野生型对照细胞进行了实验,这些细胞具有特征明确的核力学性质。对时变核变形数据进行幂律和不同粘弹性模型拟合表明, lamin A/C 的缺失显著改变了核的弹性和粘性性质,导致核的可变形性显著增加。最后,为了展示设备的多功能性,我们在各种细胞系和实验模型系统中对核的粘弹性力学性质进行了表征,包括来自与扩张型心肌病相关的 lamin 基因突变个体的人皮肤成纤维细胞、健康对照成纤维细胞、诱导多能干细胞 (iPSC) 和人肿瘤细胞。总之,这些实验证明了微流控装置和自动图像分析平台能够提供强大的、高通量的核力学性质测量,包括广泛应用中的时变弹性和粘性行为。

相似文献

4
Mechanics and deformation of the nucleus in micropipette aspiration experiment.
J Biomech. 2007;40(9):2053-62. doi: 10.1016/j.jbiomech.2006.09.023. Epub 2006 Nov 16.
5
A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies.
Integr Biol (Camb). 2013 Nov;5(11):1374-84. doi: 10.1039/c3ib40128f. Epub 2013 Sep 16.
7
Mechanical properties of the cell nucleus and the effect of emerin deficiency.
Biophys J. 2006 Dec 15;91(12):4649-64. doi: 10.1529/biophysj.106.086454. Epub 2006 Sep 22.
8
Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses.
J R Soc Interface. 2022 Apr;19(189):20210880. doi: 10.1098/rsif.2021.0880. Epub 2022 Apr 20.
9
A Unified Linear Viscoelastic Model of the Cell Nucleus Defines the Mechanical Contributions of Lamins and Chromatin.
Adv Sci (Weinh). 2020 Mar 5;7(8):1901222. doi: 10.1002/advs.201901222. eCollection 2020 Apr.
10
Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device.
Biophys J. 2016 Nov 1;111(9):2039-2050. doi: 10.1016/j.bpj.2016.09.034.

引用本文的文献

1
High throughput cell mechanotyping of cell response to cytoskeletal modulations using a microfluidic cell deformation system.
Microfluid Nanofluidics. 2024 Dec;28(12). doi: 10.1007/s10404-024-02774-4. Epub 2024 Nov 26.
2
Viscoelastic recovery times of chondrocytes measured using a novel 3D-printed microfluidic device.
Meas Sci Technol. 2025 Aug 31;36(8):085701. doi: 10.1088/1361-6501/adf65a. Epub 2025 Aug 12.
3
Dysfunctional mechanotransduction regulates the progression of PIK3CA-driven vascular malformations.
APL Bioeng. 2025 Feb 5;9(1):016106. doi: 10.1063/5.0234507. eCollection 2025 Mar.
4
P300 Modulates Endothelial Mechanotransduction of Fluid Shear Stress.
Cell Mol Bioeng. 2024 Jun 11;17(5):507-523. doi: 10.1007/s12195-024-00805-2. eCollection 2024 Oct.
5
Metastatic organotropism in small cell lung cancer.
bioRxiv. 2025 Jan 24:2024.10.07.617066. doi: 10.1101/2024.10.07.617066.
6
Dysfunctional mechanotransduction regulates the progression of PIK3CA-driven vascular malformations.
bioRxiv. 2024 Dec 9:2024.08.22.609165. doi: 10.1101/2024.08.22.609165.
7
Cell spheroid viscoelasticity is deformation-dependent.
Sci Rep. 2024 Aug 28;14(1):20013. doi: 10.1038/s41598-024-70759-y.
8
Microfluidic technologies for cell deformability cytometry.
Smart Med. 2022 Dec 22;1(1):e20220001. doi: 10.1002/SMMD.20220001. eCollection 2022 Dec.
9
A high-throughput microfabricated platform for rapid quantification of metastatic potential.
Sci Adv. 2024 Aug 16;10(33):eadk0015. doi: 10.1126/sciadv.adk0015.
10
N-terminal tags impair the ability of lamin A to provide structural support to the nucleus.
J Cell Sci. 2024 Aug 15;137(16). doi: 10.1242/jcs.262207. Epub 2024 Aug 23.

本文引用的文献

1
Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells.
Nat Mater. 2020 Apr;19(4):464-473. doi: 10.1038/s41563-019-0563-5. Epub 2019 Dec 16.
2
Aggressive prostate cancer cell nuclei have reduced stiffness.
Biomicrofluidics. 2018 Jan 2;12(1):014102. doi: 10.1063/1.5019728. eCollection 2018 Jan.
3
Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.
5
As a Nucleus Enters a Small Pore, Chromatin Stretches and Maintains Integrity, Even with DNA Breaks.
Biophys J. 2017 Feb 7;112(3):446-449. doi: 10.1016/j.bpj.2016.09.047. Epub 2016 Oct 27.
6
Metastatic State of Cancer Cells May Be Indicated by Adhesion Strength.
Biophys J. 2017 Feb 28;112(4):736-745. doi: 10.1016/j.bpj.2016.12.038.
7
A microfluidic device for characterizing nuclear deformations.
Lab Chip. 2017 Feb 28;17(5):805-813. doi: 10.1039/c6lc01308b.
8
Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus.
Lab Chip. 2017 Feb 14;17(4):663-670. doi: 10.1039/c6lc01443g.
9
Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.
Mol Biol Cell. 2017 Jul 7;28(14):1984-1996. doi: 10.1091/mbc.E16-09-0653. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验