Smith Ian M, Ursitti Jeanine A, Venkata Sai Pranav Majeti, Givpoor Nikka, Stemberger Megan B, Hengen Autumn, Banerjee Shohini, Hached Khaled, van der Laan Siem, Stains Joseph, Martin Stuart S, Ward Christopher, Stroka Kimberly M
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
University of Maryland School of Medicine, Department of Orthopedics, Baltimore, MD 21201.
Microfluid Nanofluidics. 2024 Dec;28(12). doi: 10.1007/s10404-024-02774-4. Epub 2024 Nov 26.
Cellular mechanical properties influence cellular functions across pathological and physiological systems. The observation of these mechanical properties is limited in part by methods with a low throughput of acquisition or with low accessibility. To overcome these limitations, we have designed, developed, validated, and optimized a microfluidic cellular deformation system (MCDS) capable of mechanotyping suspended cells on a population level at a high throughput rate of ~300 cells per second. The MCDS provides researchers with a viable method for efficiently quantifying cellular mechanical properties towards defining prognostic implications of mechanical changes in pathology or screening drugs to modulate cytoskeletal integrity.
细胞力学特性影响着病理和生理系统中的细胞功能。对这些力学特性的观察在一定程度上受到采集通量低或可及性差的方法的限制。为了克服这些限制,我们设计、开发、验证并优化了一种微流控细胞变形系统(MCDS),该系统能够以每秒约300个细胞的高通量在群体水平上对悬浮细胞进行机械分型。MCDS为研究人员提供了一种可行的方法,用于有效地量化细胞力学特性,以确定病理学中力学变化的预后意义或筛选调节细胞骨架完整性的药物。