文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于弥漫性大B细胞淋巴瘤中精确细胞核分割的增强型HoVerNet优化

Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma.

作者信息

Tang Gei Ki, Lim Chee Chin, Hussain Faezahtul Arbaeyah, Oung Qi Wei, Yajid Aidy Irman, Mohammad Azmi Sumayyah, Chong Yen Fook

机构信息

Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia.

Sport Engineering Research Centre, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia.

出版信息

Diagnostics (Basel). 2025 Aug 4;15(15):1958. doi: 10.3390/diagnostics15151958.


DOI:10.3390/diagnostics15151958
PMID:40804921
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12345923/
Abstract

: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, for nuclei segmentation and classification in CMYC-stained whole slide images and to assess its integration into a user-friendly diagnostic tool. : A dataset of 122 CMYC-stained whole slide images (WSIs) was used. Pre-processing steps, including stain normalization and patch extraction, were applied to improve input consistency. HoVerNet, a multi-branch neural network, was used for both nuclei segmentation and classification, particularly focusing on its ability to manage overlapping nuclei and complex morphological variations. Model performance was validated using metrics such as accuracy, precision, recall, and F1 score. Additionally, a graphic user interface (GUI) was developed to incorporate automated segmentation, cell counting, and severity assessment functionalities. : HoVerNet achieved a validation accuracy of 82.5%, with a precision of 85.3%, recall of 82.6%, and an F1 score of 83.9%. The model showed powerful performance in differentiating overlapping and morphologically complex nuclei. The developed GUI enabled real-time visualization and diagnostic support, enhancing the efficiency and usability of DLBCL histopathological analysis. : HoVerNet, combined with an integrated GUI, presents a promising approach for streamlining DLBCL diagnostics through accurate segmentation and real-time visualization. Future work will focus on incorporating Vision Transformers and additional staining protocols to improve generalizability and clinical utility.

摘要

弥漫性大B细胞淋巴瘤(DLBCL)是非霍奇金淋巴瘤最常见的亚型,需要对细胞核进行精确分割和分类,以实现有效的诊断和疾病严重程度评估。本研究旨在评估深度学习模型HoVerNet在CMYC染色的全切片图像中进行细胞核分割和分类的性能,并评估其集成到用户友好型诊断工具中的情况。 使用了一个包含122张CMYC染色全切片图像(WSIs)的数据集。应用了包括染色归一化和补丁提取在内的预处理步骤,以提高输入的一致性。HoVerNet是一个多分支神经网络,用于细胞核分割和分类,特别关注其处理重叠细胞核和复杂形态变化的能力。使用准确率、精确率、召回率和F1分数等指标验证模型性能。此外,还开发了一个图形用户界面(GUI),以纳入自动分割、细胞计数和严重程度评估功能。 HoVerNet的验证准确率为82.5%,精确率为85.3%,召回率为82.6%,F1分数为83.9%。该模型在区分重叠和形态复杂的细胞核方面表现出强大的性能。开发的GUI实现了实时可视化和诊断支持,提高了DLBCL组织病理学分析的效率和可用性。 HoVerNet与集成的GUI相结合,通过准确分割和实时可视化,为简化DLBCL诊断提供了一种有前景的方法。未来的工作将集中在纳入视觉Transformer和其他染色方案,以提高通用性和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/50d14b54809d/diagnostics-15-01958-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/d11d731a34e5/diagnostics-15-01958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/24ee489fd7d3/diagnostics-15-01958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/3ce081665a5d/diagnostics-15-01958-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/23af9ad602a4/diagnostics-15-01958-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/22a44e20de7a/diagnostics-15-01958-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/16909cf6e8f0/diagnostics-15-01958-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/79e3b6b9c208/diagnostics-15-01958-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/52d3c78af8f6/diagnostics-15-01958-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/a2ab4193a31f/diagnostics-15-01958-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/6c6f7eeaca24/diagnostics-15-01958-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/af92563022b6/diagnostics-15-01958-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/1c898a66a352/diagnostics-15-01958-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/e43988d8fb10/diagnostics-15-01958-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/50d14b54809d/diagnostics-15-01958-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/d11d731a34e5/diagnostics-15-01958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/24ee489fd7d3/diagnostics-15-01958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/3ce081665a5d/diagnostics-15-01958-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/23af9ad602a4/diagnostics-15-01958-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/22a44e20de7a/diagnostics-15-01958-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/16909cf6e8f0/diagnostics-15-01958-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/79e3b6b9c208/diagnostics-15-01958-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/52d3c78af8f6/diagnostics-15-01958-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/a2ab4193a31f/diagnostics-15-01958-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/6c6f7eeaca24/diagnostics-15-01958-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/af92563022b6/diagnostics-15-01958-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/1c898a66a352/diagnostics-15-01958-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/e43988d8fb10/diagnostics-15-01958-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/12345923/50d14b54809d/diagnostics-15-01958-g014.jpg

相似文献

[1]
Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma.

Diagnostics (Basel). 2025-8-4

[2]
.

Int Ophthalmol. 2025-6-27

[3]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[4]
Integrated neural network framework for multi-object detection and recognition using UAV imagery.

Front Neurorobot. 2025-7-30

[5]
Accurate classification of benign and malignant breast tumors in ultrasound imaging with an enhanced deep learning model.

Front Bioeng Biotechnol. 2025-6-25

[6]
Multi-resolution vision transformer model for histopathological skin cancer subtype classification using whole slide images.

Comput Biol Med. 2025-9

[7]
Automatic segmentation and classification of Papanicolaou-stained cells and dataset for oral cancer detection.

Comput Biol Med. 2024-9

[8]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[9]
Cell Segmentation With Globally Optimized Boundaries (CSGO): A Deep Learning Pipeline for Whole-Cell Segmentation in Hematoxylin-and-Eosin-Stained Tissues.

Lab Invest. 2025-2

[10]
Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res. 2025-1-29

本文引用的文献

[1]
Image-Based Deep Learning Detection of High-Grade B-Cell Lymphomas Directly from Hematoxylin and Eosin Images.

Cancers (Basel). 2023-10-29

[2]
Sensitivity of an AI method for [F]FDG PET/CT outcome prediction of diffuse large B-cell lymphoma patients to image reconstruction protocols.

EJNMMI Res. 2023-9-28

[3]
An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients.

Sci Rep. 2023-8-12

[4]
Hybrid Models Based on Fusion Features of a CNN and Handcrafted Features for Accurate Histopathological Image Analysis for Diagnosing Malignant Lymphomas.

Diagnostics (Basel). 2023-7-4

[5]
Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma.

Cancers (Basel). 2022-4-15

[6]
Deep learning-based tumour segmentation and total metabolic tumour volume prediction in the prognosis of diffuse large B-cell lymphoma patients in 3D FDG-PET images.

Eur Radiol. 2022-7

[7]
Artificial intelligence-assisted mapping of proliferation centers allows the distinction of accelerated phase from large cell transformation in chronic lymphocytic leukemia.

Mod Pathol. 2022-8

[8]
Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images.

Cancers (Basel). 2021-5-17

[9]
DLBCL-Morph: Morphological features computed using deep learning for an annotated digital DLBCL image set.

Sci Data. 2021-5-20

[10]
A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals.

Nat Commun. 2020-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索