Suppr超能文献

TSPO 缺乏会导致线粒体功能障碍,进而导致缺氧、血管生成以及促生长的代谢向胶质母细胞瘤中的糖酵解转变。

TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma.

机构信息

Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China.

Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Neuro Oncol. 2020 Feb 20;22(2):240-252. doi: 10.1093/neuonc/noz183.

Abstract

BACKGROUND

The ligands of mitochondrial translocator protein (TSPO) have been widely used as diagnostic biomarkers for glioma. However, the true biological actions of TSPO in vivo and its role in glioma tumorigenesis remain elusive.

METHODS

TSPO knockout xenograft and spontaneous mouse glioma models were employed to assess the roles of TSPO in the pathogenesis of glioma. A Seahorse Extracellular Flux Analyzer was used to evaluate mitochondrial oxidative phosphorylation and glycolysis in TSPO knockout and wild-type glioma cells.

RESULTS

TSPO deficiency promoted glioma cell proliferation in vitro in mouse GL261 cells and patient-derived stem cell-like GBM1B cells. TSPO knockout increased glioma growth and angiogenesis in intracranial xenografts and a mouse spontaneous glioma model. Loss of TSPO resulted in a greater number of fragmented mitochondria, increased glucose uptake and lactic acid conversion, decreased oxidative phosphorylation, and increased glycolysis.

CONCLUSION

TSPO serves as a key regulator of glioma growth and malignancy by controlling the metabolic balance between mitochondrial oxidative phosphorylation and glycolysis.1. TSPO deficiency promotes glioma growth and angiogenesis.2. TSPO regulates the balance between mitochondrial oxidative phosphorylation and glycolysis.

摘要

背景

线粒体转位蛋白(TSPO)的配体已被广泛用作神经胶质瘤的诊断生物标志物。然而,TSPO 在体内的真正生物学作用及其在神经胶质瘤发生中的作用仍不清楚。

方法

采用 TSPO 敲除异种移植和自发性小鼠神经胶质瘤模型来评估 TSPO 在神经胶质瘤发病机制中的作用。使用 Seahorse 细胞外通量分析仪评估 TSPO 敲除和野生型神经胶质瘤细胞中的线粒体氧化磷酸化和糖酵解。

结果

TSPO 缺失促进了体外培养的小鼠 GL261 细胞和患者来源的干细胞样 GBM1B 细胞中的神经胶质瘤细胞增殖。TSPO 敲除增加了颅内异种移植和小鼠自发性神经胶质瘤模型中的神经胶质瘤生长和血管生成。TSPO 缺失导致线粒体碎片化增加、葡萄糖摄取和乳酸转化增加、氧化磷酸化减少和糖酵解增加。

结论

TSPO 通过控制线粒体氧化磷酸化和糖酵解之间的代谢平衡,成为神经胶质瘤生长和恶性程度的关键调节因子。1. TSPO 缺失促进神经胶质瘤的生长和血管生成。2. TSPO 调节线粒体氧化磷酸化和糖酵解之间的平衡。

相似文献

3
Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model.
Neuro Oncol. 2018 Feb 19;20(3):343-354. doi: 10.1093/neuonc/nox170.
5
The angiogenic switch leads to a metabolic shift in human glioblastoma.
Neuro Oncol. 2017 Mar 1;19(3):383-393. doi: 10.1093/neuonc/now175.
6
7
Mitochondrial NIX Promotes Tumor Survival in the Hypoxic Niche of Glioblastoma.
Cancer Res. 2019 Oct 15;79(20):5218-5232. doi: 10.1158/0008-5472.CAN-19-0198. Epub 2019 Sep 5.
8
TSPO-PET and diffusion-weighted MRI for imaging a mouse model of infiltrative human glioma.
Neuro Oncol. 2019 Jun 10;21(6):755-764. doi: 10.1093/neuonc/noz029.
9
Reducing VDAC1 expression induces a non-apoptotic role for pro-apoptotic proteins in cancer cell differentiation.
Biochim Biophys Acta. 2016 Aug;1857(8):1228-1242. doi: 10.1016/j.bbabio.2016.04.005. Epub 2016 Apr 12.

引用本文的文献

1
Translocator protein deficiency blocks the ferroptosis of malignant peripheral nerve sheath tumors through glutathione peroxidase 4.
Front Cell Neurosci. 2025 Aug 6;19:1624817. doi: 10.3389/fncel.2025.1624817. eCollection 2025.
2
Refining seizure foci localization: the potential of TSPO-PET.
Acta Epileptol. 2025 Aug 21;7(1):41. doi: 10.1186/s42494-025-00234-2.
3
Oroxin A suppresses colorectal tumor growth by regulating the TRIM24-mediated ferroptosis and TSPO pathway.
iScience. 2025 Jul 24;28(8):113196. doi: 10.1016/j.isci.2025.113196. eCollection 2025 Aug 15.
4
Translocator protein facilitates neutrophil-mediated mucosal inflammation in inflammatory bowel diseases.
World J Gastroenterol. 2025 Jul 21;31(27):109239. doi: 10.3748/wjg.v31.i27.109239.
6
Assessment of TSPO Gene Expression Levels in Colorectal Cancer Tumors: A Paired Sample Study.
Cancer Rep (Hoboken). 2025 Jun;8(6):e70256. doi: 10.1002/cnr2.70256.
9
Increased TSPO alleviates neuropathic pain by preventing pyroptosis via the AMPK-PGC-1α pathway.
J Headache Pain. 2025 Jan 27;26(1):16. doi: 10.1186/s10194-025-01953-0.

本文引用的文献

1
The Interaction Between Neuroinflammation and β-Amyloid in Cognitive Decline in Parkinson's Disease.
Mol Neurobiol. 2020 Jan;57(1):492-501. doi: 10.1007/s12035-019-01714-6. Epub 2019 Aug 5.
5
Hypoxic Microenvironment and Metastatic Bone Disease.
Int J Mol Sci. 2018 Nov 9;19(11):3523. doi: 10.3390/ijms19113523.
7
Combined PET Imaging of the Inflammatory Tumor Microenvironment Identifies Margins of Unique Radiotracer Uptake.
Cancer Res. 2017 Apr 15;77(8):1831-1841. doi: 10.1158/0008-5472.CAN-16-2628. Epub 2017 Jan 30.
9
The Warburg effect: 80 years on.
Biochem Soc Trans. 2016 Oct 15;44(5):1499-1505. doi: 10.1042/BST20160094.
10
Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile.
PLoS One. 2016 Dec 1;11(12):e0167307. doi: 10.1371/journal.pone.0167307. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验