Wang Yun-Xiao, Lai Wei-Hong, Chou Shu-Lei, Liu Hua-Kun, Dou Shi-Xue
Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
Adv Mater. 2020 May;32(18):e1903952. doi: 10.1002/adma.201903952. Epub 2019 Sep 30.
Rechargeable room-temperature sodium-sulfur (RT-NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two-electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g ) and specific energy (1273 Wh kg ). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT-NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT-NaS batteries are summarized.
可充电室温钠硫(RT-NaS)电池因其高能量密度和低成本,成为未来固定式储能最具吸引力的技术之一。硫阴极可通过双电子转换反应与钠离子发生反应,从而实现超高理论容量(1672 mAh g)和比能量(1273 Wh kg)。不幸的是,非导电硫的反应动力学缓慢、多硫化物严重溶解以及金属钠的使用,给RT-NaS电池的发展带来了巨大挑战。重点介绍了致命的多硫化物溶解问题,展示了针对多硫化物固定和转化的重要研究,并总结了在完整物理限制、强化学相互作用、阻挡层和电解质优化方面已报道的补救措施。总结了实用RT-NaS电池未来的研究方向。