表示性漂移的原因和后果。

Causes and consequences of representational drift.

机构信息

Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom.

出版信息

Curr Opin Neurobiol. 2019 Oct;58:141-147. doi: 10.1016/j.conb.2019.08.005. Epub 2019 Sep 27.

Abstract

The nervous system learns new associations while maintaining memories over long periods, exhibiting a balance between flexibility and stability. Recent experiments reveal that neuronal representations of learned sensorimotor tasks continually change over days and weeks, even after animals have achieved expert behavioral performance. How is learned information stored to allow consistent behavior despite ongoing changes in neuronal activity? What functions could ongoing reconfiguration serve? We highlight recent experimental evidence for such representational drift in sensorimotor systems, and discuss how this fits into a framework of distributed population codes. We identify recent theoretical work that suggests computational roles for drift and argue that the recurrent and distributed nature of sensorimotor representations permits drift while limiting disruptive effects. We propose that representational drift may create error signals between interconnected brain regions that can be used to keep neural codes consistent in the presence of continual change. These concepts suggest experimental and theoretical approaches to studying both learning and maintenance of distributed and adaptive population codes.

摘要

神经系统在长时间内保持记忆的同时学习新的关联,表现出灵活性和稳定性之间的平衡。最近的实验表明,即使动物已经达到了专家级的行为表现,学习后的感觉运动任务的神经元表示在数天和数周内仍会不断变化。学习信息是如何存储的,以便尽管神经元活动持续变化,仍能保持一致的行为?持续的重新配置有什么作用?我们强调了感觉运动系统中这种代表性漂移的最新实验证据,并讨论了它如何适应分布式群体代码框架。我们确定了最近的理论工作,这些工作表明漂移具有计算作用,并认为感觉运动表现的递归和分布式性质允许漂移,同时限制了破坏性影响。我们提出,代表性漂移可能会在相互连接的大脑区域之间产生误差信号,这些信号可用于在持续变化的情况下保持神经代码的一致性。这些概念表明了研究分布式和适应性群体代码的学习和维护的实验和理论方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索