Suppr超能文献

表示性漂移的原因和后果。

Causes and consequences of representational drift.

机构信息

Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom.

出版信息

Curr Opin Neurobiol. 2019 Oct;58:141-147. doi: 10.1016/j.conb.2019.08.005. Epub 2019 Sep 27.

Abstract

The nervous system learns new associations while maintaining memories over long periods, exhibiting a balance between flexibility and stability. Recent experiments reveal that neuronal representations of learned sensorimotor tasks continually change over days and weeks, even after animals have achieved expert behavioral performance. How is learned information stored to allow consistent behavior despite ongoing changes in neuronal activity? What functions could ongoing reconfiguration serve? We highlight recent experimental evidence for such representational drift in sensorimotor systems, and discuss how this fits into a framework of distributed population codes. We identify recent theoretical work that suggests computational roles for drift and argue that the recurrent and distributed nature of sensorimotor representations permits drift while limiting disruptive effects. We propose that representational drift may create error signals between interconnected brain regions that can be used to keep neural codes consistent in the presence of continual change. These concepts suggest experimental and theoretical approaches to studying both learning and maintenance of distributed and adaptive population codes.

摘要

神经系统在长时间内保持记忆的同时学习新的关联,表现出灵活性和稳定性之间的平衡。最近的实验表明,即使动物已经达到了专家级的行为表现,学习后的感觉运动任务的神经元表示在数天和数周内仍会不断变化。学习信息是如何存储的,以便尽管神经元活动持续变化,仍能保持一致的行为?持续的重新配置有什么作用?我们强调了感觉运动系统中这种代表性漂移的最新实验证据,并讨论了它如何适应分布式群体代码框架。我们确定了最近的理论工作,这些工作表明漂移具有计算作用,并认为感觉运动表现的递归和分布式性质允许漂移,同时限制了破坏性影响。我们提出,代表性漂移可能会在相互连接的大脑区域之间产生误差信号,这些信号可用于在持续变化的情况下保持神经代码的一致性。这些概念表明了研究分布式和适应性群体代码的学习和维护的实验和理论方法。

相似文献

1
Causes and consequences of representational drift.
Curr Opin Neurobiol. 2019 Oct;58:141-147. doi: 10.1016/j.conb.2019.08.005. Epub 2019 Sep 27.
2
Self-healing codes: How stable neural populations can track continually reconfiguring neural representations.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2106692119.
3
The geometry of representational drift in natural and artificial neural networks.
PLoS Comput Biol. 2022 Nov 28;18(11):e1010716. doi: 10.1371/journal.pcbi.1010716. eCollection 2022 Nov.
4
Drifting neuronal representations: Bug or feature?
Biol Cybern. 2022 Jun;116(3):253-266. doi: 10.1007/s00422-021-00916-3. Epub 2022 Jan 7.
5
Representational drift: Emerging theories for continual learning and experimental future directions.
Curr Opin Neurobiol. 2022 Oct;76:102609. doi: 10.1016/j.conb.2022.102609. Epub 2022 Aug 5.
6
Coordinated drift of receptive fields in Hebbian/anti-Hebbian network models during noisy representation learning.
Nat Neurosci. 2023 Feb;26(2):339-349. doi: 10.1038/s41593-022-01225-z. Epub 2023 Jan 12.
7
Contribution of behavioural variability to representational drift.
Elife. 2022 Aug 30;11:e77907. doi: 10.7554/eLife.77907.
8
Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation.
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2023832118.
9
Memory Reactivation during Learning Simultaneously Promotes Dentate Gyrus/CA Pattern Differentiation and CA Memory Integration.
J Neurosci. 2021 Jan 27;41(4):726-738. doi: 10.1523/JNEUROSCI.0394-20.2020. Epub 2020 Nov 25.
10
Stable task information from an unstable neural population.
Elife. 2020 Jul 14;9:e51121. doi: 10.7554/eLife.51121.

引用本文的文献

1
Wider Than the Sky: An Alternative to "Mapping" the World Onto the Brain.
Eur J Neurosci. 2025 Aug;62(4):e70224. doi: 10.1111/ejn.70224.
2
Representational drift without synaptic plasticity.
bioRxiv. 2025 Jul 29:2025.07.23.666352. doi: 10.1101/2025.07.23.666352.
3
Representational drift as the consequence of ongoing memory storage.
Sci Rep. 2025 Jul 30;15(1):27746. doi: 10.1038/s41598-025-11102-x.
4
Computing with electromagnetic fields rather than binary digits: a route towards artificial general intelligence and conscious AI.
Front Syst Neurosci. 2025 Jun 25;19:1599406. doi: 10.3389/fnsys.2025.1599406. eCollection 2025.
5
Error-driven changes in hippocampal representations accompany flexible re-learning.
bioRxiv. 2025 May 21:2025.05.20.655046. doi: 10.1101/2025.05.20.655046.
6
Homeostasis of a representational map in the neocortex.
Nat Neurosci. 2025 Jun 5. doi: 10.1038/s41593-025-01982-7.
7
Evolving Engrams Demand Changes in Effective Cues.
Hippocampus. 2025 May;35(3):e70015. doi: 10.1002/hipo.70015.
10
Beyond Mechanism-Extending Our Concepts of Causation in Neuroscience.
Eur J Neurosci. 2025 Mar;61(5):e70064. doi: 10.1111/ejn.70064.

本文引用的文献

2
Revealing neural correlates of behavior without behavioral measurements.
Nat Commun. 2019 Oct 18;10(1):4745. doi: 10.1038/s41467-019-12724-2.
4
Fundamental bounds on learning performance in neural circuits.
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10537-10546. doi: 10.1073/pnas.1813416116. Epub 2019 May 6.
5
Spontaneous behaviors drive multidimensional, brainwide activity.
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.
6
The Spatial Structure of Neural Encoding in Mouse Posterior Cortex during Navigation.
Neuron. 2019 Apr 3;102(1):232-248.e11. doi: 10.1016/j.neuron.2019.01.029. Epub 2019 Feb 13.
7
Watch, Imagine, Attempt: Motor Cortex Single-Unit Activity Reveals Context-Dependent Movement Encoding in Humans With Tetraplegia.
Front Hum Neurosci. 2018 Nov 15;12:450. doi: 10.3389/fnhum.2018.00450. eCollection 2018.
8
Molecular Mechanisms of the Memory Trace.
Trends Neurosci. 2019 Jan;42(1):14-22. doi: 10.1016/j.tins.2018.10.005. Epub 2018 Oct 31.
9
Predictive Processing: A Canonical Cortical Computation.
Neuron. 2018 Oct 24;100(2):424-435. doi: 10.1016/j.neuron.2018.10.003.
10
Predicting how and when hidden neurons skew measured synaptic interactions.
PLoS Comput Biol. 2018 Oct 22;14(10):e1006490. doi: 10.1371/journal.pcbi.1006490. eCollection 2018 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验