Rich P Dylan, Thiberge Stephan Y, Daw Nathaniel D, Tank David W
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
bioRxiv. 2025 May 21:2025.05.20.655046. doi: 10.1101/2025.05.20.655046.
Flexible behavior requires both the learning of new associations, and the suppression of previous ones, but how neural circuits achieve this balance remains unclear. Here we show that continuous changes in hippocampal representations, known as drift, may facilitate this process. We used voluntary head-fixation and calcium imaging to record from CA1 in rats during an odor-guided navigation task that required frequent re-learning. We found systematic representational changes over the course of the multi-hour sessions that were increased following errors. A simple neural network model revealed that such error-driven drift can enable flexible re-learning by allowing new associations to form from new neural patterns. A consequence of this is that previous associations are maintained in latent synaptic weights. These findings reconcile the apparent tension between representational drift and stable memory storage, demonstrating how dynamic neural codes could support both flexible behavior and lasting memories.
灵活的行为既需要学习新的关联,也需要抑制先前的关联,但神经回路如何实现这种平衡仍不清楚。在这里,我们表明海马体表征的持续变化,即所谓的漂移,可能有助于这一过程。我们使用自愿头部固定和钙成像技术,在一项需要频繁重新学习的气味引导导航任务中记录大鼠CA1区的活动。我们发现在数小时的实验过程中,表征存在系统性变化,且在出现错误后这种变化会增加。一个简单的神经网络模型表明,这种错误驱动的漂移可以通过允许从新的神经模式中形成新的关联来实现灵活的重新学习。这样做的一个结果是,先前的关联会保留在潜在的突触权重中。这些发现调和了表征漂移与稳定记忆存储之间明显的矛盾,证明了动态神经编码如何能够支持灵活行为和持久记忆。