Suppr超能文献

从不稳定的神经群体中获取稳定的任务信息。

Stable task information from an unstable neural population.

机构信息

Department of Engineering, University of Cambridge, Cambridge, United Kingdom.

Department of Electrical Engineering, Stanford University, Stanford, United States.

出版信息

Elife. 2020 Jul 14;9:e51121. doi: 10.7554/eLife.51121.

Abstract

Over days and weeks, neural activity representing an animal's position and movement in sensorimotor cortex has been found to continually reconfigure or 'drift' during repeated trials of learned tasks, with no obvious change in behavior. This challenges classical theories, which assume stable engrams underlie stable behavior. However, it is not known whether this drift occurs systematically, allowing downstream circuits to extract consistent information. Analyzing long-term calcium imaging recordings from posterior parietal cortex in mice (), we show that drift is systematically constrained far above chance, facilitating a linear weighted readout of behavioral variables. However, a significant component of drift continually degrades a fixed readout, implying that drift is not confined to a null coding space. We calculate the amount of plasticity required to compensate drift independently of any learning rule, and find that this is within physiologically achievable bounds. We demonstrate that a simple, biologically plausible local learning rule can achieve these bounds, accurately decoding behavior over many days.

摘要

在数日和数周的时间里,人们发现,在重复进行学习任务的过程中,代表动物在感觉运动皮层中位置和运动的神经活动会不断重新配置或“漂移”,而行为并没有明显变化。这一发现挑战了经典理论,经典理论认为,稳定的记忆痕迹是稳定行为的基础。然而,目前尚不清楚这种漂移是否会系统地发生,从而使下游电路能够提取一致的信息。我们分析了小鼠后顶叶皮层的长期钙成像记录(),结果表明,漂移受到了系统的限制,远高于随机水平,从而有利于对行为变量进行线性加权读取。然而,漂移的一个重要组成部分会不断降低固定读取的效果,这意味着漂移并不仅限于零编码空间。我们计算了独立于任何学习规则补偿漂移所需的可塑性量,并发现这在生理上是可行的。我们证明了一种简单、具有生物学合理性的局部学习规则可以达到这些限制,并且可以在许多天内准确解码行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e0a/7392606/53557413a75c/elife-51121-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验