Suppr超能文献

基于双交联透明质酸水凝胶的持续药物释放伤口敷料的3D生物打印

3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluronic-Acid-Based Hydrogels.

作者信息

Si Haopeng, Xing Tianlong, Ding Yulong, Zhang Hongbo, Yin Ruixue, Zhang Wenjun

机构信息

School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.

Black Flame Biomedical Lt.D, Shanghai 201318, China.

出版信息

Polymers (Basel). 2019 Sep 27;11(10):1584. doi: 10.3390/polym11101584.

Abstract

Hyaluronic acid (HA)-based hydrogels are widely used in biomedical applications due to their excellent biocompatibility. HA can be Ultraviolet (UV)-crosslinked by modification with methacrylic anhydride (HA-MA) and crosslinked by modification with 3,3'-dithiobis(propionylhydrazide) (DTP) (HA-SH) via click reaction. In the study presented in this paper, a 3D-bioprinted, double-crosslinked, hyaluronic-acid-based hydrogel for wound dressing was proposed. The hydrogel was produced by mixing HA-MA and HA-SH at different weight ratios. The rheological test showed that the storage modulus (G') of the HA-SH/HA-MA hydrogel increased with the increase in the HA-MA content. The hydrogel had a high swelling ratio and a high controlled degradation rate. The degradation test showed that the hydrogel at the HA-SH/HA-MA ratio of 9:1 (S9M1) degraded by 89.91% ± 2.26% at 11 days. The rheological performance, drug release profile and the cytocompatibility of HA-SH/HA-MA hydrogels with loaded Nafcillin, which is an antibacterial drug, were evaluated. The wound dressing function of this hydrogel was evaluated by Live/Dead staining and CCK-8 assays. The foregoing results imply that the proposed HA-SH/HA-MA hydrogel has promise in wound repair applications.

摘要

基于透明质酸(HA)的水凝胶因其优异的生物相容性而被广泛应用于生物医学领域。HA可通过甲基丙烯酸酐改性进行紫外(UV)交联(HA-MA),并通过点击反应与3,3'-二硫代双(丙酰肼)(DTP)改性交联(HA-SH)。在本文提出的研究中,一种用于伤口敷料的3D生物打印、双交联、基于透明质酸的水凝胶被提出。该水凝胶通过以不同重量比混合HA-MA和HA-SH制备。流变学测试表明,HA-SH/HA-MA水凝胶的储能模量(G')随HA-MA含量的增加而增加。该水凝胶具有高溶胀率和高可控降解率。降解测试表明,HA-SH/HA-MA比例为9:1(S9M1)的水凝胶在11天时降解了89.91%±2.26%。对负载抗菌药物萘夫西林的HA-SH/HA-MA水凝胶的流变性能、药物释放曲线和细胞相容性进行了评估。通过活/死染色和CCK-8测定评估了该水凝胶的伤口敷料功能。上述结果表明,所提出的HA-SH/HA-MA水凝胶在伤口修复应用中具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16be/6835267/f85a76819f5c/polymers-11-01584-g001a.jpg

相似文献

2
Synthesis and degradation test of hyaluronic acid hydrogels.
Int J Biol Macromol. 2007 Mar 10;40(4):374-80. doi: 10.1016/j.ijbiomac.2006.09.019. Epub 2006 Oct 14.
3
Forming Hyperbranched PEG-Thiolated Hyaluronic Acid Hydrogels With Honey-Mimetic Antibacterial Properties.
Front Bioeng Biotechnol. 2021 Nov 16;9:742135. doi: 10.3389/fbioe.2021.742135. eCollection 2021.
4
Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells.
Acta Biomater. 2017 Feb;49:284-295. doi: 10.1016/j.actbio.2016.12.001. Epub 2016 Dec 5.
5
assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering.
Bioact Mater. 2017 Sep 21;2(4):253-259. doi: 10.1016/j.bioactmat.2017.09.002. eCollection 2017 Dec.
6
Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis.
Mater Sci Eng C Mater Biol Appl. 2021 May;124:112072. doi: 10.1016/j.msec.2021.112072. Epub 2021 Mar 26.
9
The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.
Colloids Surf B Biointerfaces. 2016 Apr 1;140:392-402. doi: 10.1016/j.colsurfb.2016.01.008. Epub 2016 Jan 6.
10
Dual-crosslinked hyaluronic acid hydrogel with self-healing capacity and enhanced mechanical properties.
Carbohydr Polym. 2023 Feb 1;301(Pt B):120372. doi: 10.1016/j.carbpol.2022.120372. Epub 2022 Nov 21.

引用本文的文献

2
Light-Assisted 3D-Printed Hydrogels for Antibacterial Applications.
Small Sci. 2024 May 23;4(8):2400097. doi: 10.1002/smsc.202400097. eCollection 2024 Aug.
3
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration.
Int J Extrem Manuf. 2025 Feb 1;7(1):012009. doi: 10.1088/2631-7990/ad878c. Epub 2024 Nov 19.
4
Nanotechnological Antibacterial and Conductive Wound Dressings for Pressure Ulcer Prevention.
Nanomaterials (Basel). 2024 Aug 3;14(15):1309. doi: 10.3390/nano14151309.
5
In Vitro Biological Evaluation of an Alginate-Based Hydrogel Loaded with Rifampicin for Wound Care.
Pharmaceuticals (Basel). 2024 Jul 14;17(7):943. doi: 10.3390/ph17070943.
7
8
Improved and Highly Reproducible Synthesis of Methacrylated Hyaluronic Acid with Tailored Degrees of Substitution.
ACS Omega. 2024 Jun 6;9(24):25914-25921. doi: 10.1021/acsomega.4c00372. eCollection 2024 Jun 18.
9
Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review.
Prog Polym Sci. 2022 Oct;133. doi: 10.1016/j.progpolymsci.2022.101590. Epub 2022 Aug 9.
10
Hyaluronic Acid-Extraction Methods, Sources and Applications.
Polymers (Basel). 2023 Aug 19;15(16):3473. doi: 10.3390/polym15163473.

本文引用的文献

1
Localized multidrug co-delivery by injectable self-crosslinking hydrogel for synergistic combinational chemotherapy.
J Mater Chem B. 2017 Jul 7;5(25):4852-4862. doi: 10.1039/c7tb01026e. Epub 2017 Jun 7.
2
3D Bioprinted BioMask for Facial Skin Reconstruction.
Bioprinting. 2018 Jun;10. doi: 10.1016/j.bprint.2018.e00028. Epub 2018 Aug 20.
3
Rheological and Adhesive Properties to Identify Cohesive and Dispersive Ophthalmic Viscosurgical Devices.
Chem Pharm Bull (Tokyo). 2019;67(3):277-283. doi: 10.1248/cpb.c18-00890.
4
Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5714-5726. doi: 10.1021/acsami.8b13792. Epub 2019 Jan 30.
7
Artificial, Triple-Layered, Nanomembranous Wound Patch for Potential Diabetic Foot Ulcer Intervention.
Materials (Basel). 2018 Oct 29;11(11):2128. doi: 10.3390/ma11112128.
8
Enzymatically Disulfide-Crosslinked Chitosan/Hyaluronic Acid Layer-by-Layer Self-Assembled Microcapsules for Redox-Responsive Controlled Release of Protein.
ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33493-33506. doi: 10.1021/acsami.8b07120. Epub 2018 Sep 24.
9
Mediating the invasion of smooth muscle cells into a cell-responsive hydrogel under the existence of immune cells.
Biomaterials. 2018 Oct;180:193-205. doi: 10.1016/j.biomaterials.2018.07.022. Epub 2018 Jul 17.
10
Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks.
Prog Biomater. 2018 Jun;7(2):77-92. doi: 10.1007/s40204-018-0087-0. Epub 2018 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验