Suppr超能文献

瓦里安TrueBeam商用治疗计划系统的野外剂量计算及蒙特卡罗模拟比较

Out-of-Field Dose Calculation by a Commercial Treatment Planning System and Comparison by Monte Carlo Simulation for Varian TrueBeam.

作者信息

Shine N S, Paramu Raghukumar, Gopinath M, Jaon Bos R C, Jayadevan P M

机构信息

Department of Physics, Banasthali University, Jaipur, Rajasthan, India.

Division of Radiation Physics, Regional Cancer Center, Thiruvananthapuram, Kerala, India.

出版信息

J Med Phys. 2019 Jul-Sep;44(3):156-175. doi: 10.4103/jmp.JMP_82_18.

Abstract

PURPOSE

The calculation accuracy of treatment planning systems (TPSs) drops drastically when the points outside the field edges are considered. The real accuracy of a TPS and linear accelerator (linac) combination for regions outside the field edge is a subject which demands more study. In this study, the accuracy of out-of-field dose calculated by a TPS, used with a TrueBeam (TB) linac, is quantified.

MATERIALS AND METHODS

For dose calculation, Eclipse™ version 13.7 commissioned for TB machine was used. For comparison, Monte Carlo (MC) methods, as well as the measurements, were used. The VirtuaLinac, a Geant 4-based MC program which is offered as a cloud solution, is used for the generation of input phase-space (PS) files. This PS file was imported into PRIMO (PENELOPE based MC program) for the simulation of out-of-field dose.

RESULTS

In this study, the accuracy of the out-of-field dose calculated by a TPS for a TB linac was estimated. As per the results in comparison with MC simulations, the TPS underestimated the dose by around 45% on an average for the off-axis-distance range considered in this study. As the off-axis distance increased, the underestimation of the dose also increased.

CONCLUSION

In this work, it was observed that the TPS underestimates doses beyond the edges of treatment fields for a clinical treatment executed on a TB machine. This indicates that the out-of-field dose from TPSs should only be used with a clear understanding of the inaccuracy of dose calculations beyond the edge of the field.

摘要

目的

当考虑射野边缘外的点时,治疗计划系统(TPS)的计算精度会大幅下降。TPS与直线加速器(直线加速器)组合对于射野边缘外区域的实际精度是一个需要更多研究的课题。在本研究中,对与TrueBeam(TB)直线加速器一起使用的TPS计算的野外剂量精度进行了量化。

材料与方法

剂量计算使用为TB机器调试的Eclipse™ 13.7版本。为了进行比较,使用了蒙特卡罗(MC)方法以及测量方法。VirtuaLinac是一个基于Geant 4的MC程序,作为云解决方案提供,用于生成输入相空间(PS)文件。该PS文件被导入PRIMO(基于PENELOPE的MC程序)以模拟野外剂量。

结果

在本研究中,估计了TPS对TB直线加速器计算的野外剂量的精度。根据与MC模拟的结果,对于本研究中考虑的离轴距离范围,TPS平均低估剂量约45%。随着离轴距离的增加,剂量的低估也增加。

结论

在这项工作中,观察到对于在TB机器上执行的临床治疗,TPS低估了治疗野边缘以外的剂量。这表明,只有在清楚了解射野边缘以外剂量计算不准确的情况下,才能使用TPS的野外剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b19/6764172/5747a02c2070/JMP-44-156-g005.jpg

相似文献

2
Part II: Verification of the TrueBeam head shielding model in Varian VirtuaLinac via out-of-field doses.
Med Phys. 2019 Feb;46(2):877-884. doi: 10.1002/mp.13263. Epub 2019 Jan 2.
5
A geometrical model for the Monte Carlo simulation of the TrueBeam linac.
Phys Med Biol. 2015 Jun 7;60(11):N219-29. doi: 10.1088/0031-9155/60/11/N219. Epub 2015 May 18.
6
Monitor unit verification for Varian TrueBeam VMAT plans using Monte Carlo calculations and phase space data.
J Appl Clin Med Phys. 2023 Oct;24(10):e14063. doi: 10.1002/acm2.14063. Epub 2023 Jul 19.
8
Monte Carlo simulation using PRIMO code as a tool for checking the credibility of commissioning and quality assurance of 6 MV TrueBeam STx varian LINAC.
Rep Pract Oncol Radiother. 2020 Jan-Feb;25(1):125-132. doi: 10.1016/j.rpor.2019.12.021. Epub 2019 Dec 20.

引用本文的文献

1
Peripheral dose assessment in radiation therapy using photon beams: experimental results with optically stimulated luminescence dosimeter.
Radiol Phys Technol. 2025 Mar;18(1):275-286. doi: 10.1007/s12194-025-00883-5. Epub 2025 Jan 25.
3
Comparison of the accuracy of Monte Carlo and Ray Tracing dose calculation algorithms for multiple target brain treatments on CyberKnife.
Phys Eng Sci Med. 2023 Dec;46(4):1477-1487. doi: 10.1007/s13246-023-01312-w. Epub 2023 Aug 8.
4
Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review.
Front Oncol. 2023 May 9;13:1197079. doi: 10.3389/fonc.2023.1197079. eCollection 2023.
5
Quantification of Lung Tumor Motion and Optimization of Treatment.
J Biomed Phys Eng. 2023 Feb 1;13(1):65-76. doi: 10.31661/jbpe.v0i0.2102-1278. eCollection 2023 Feb.

本文引用的文献

1
AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy.
Med Phys. 2017 Oct;44(10):e391-e429. doi: 10.1002/mp.12462. Epub 2017 Aug 20.
4
Accuracy of out-of-field dose calculations by a commercial treatment planning system.
Phys Med Biol. 2010 Dec 7;55(23):6999-7008. doi: 10.1088/0031-9155/55/23/S03. Epub 2010 Nov 12.
5
The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy.
Phys Med Biol. 2009 Oct 21;54(20):6151-63. doi: 10.1088/0031-9155/54/20/008. Epub 2009 Sep 24.
7
Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques.
Phys Med Biol. 2009 Jul 7;54(13):4131-49. doi: 10.1088/0031-9155/54/13/011. Epub 2009 Jun 12.
8
Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stage prostate cancer.
Int J Radiat Oncol Biol Phys. 2009 Jun 1;74(2):616-22. doi: 10.1016/j.ijrobp.2009.01.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验