Suppr超能文献

用于预测肩难产的机器学习模型的开发与验证

Development and validation of a machine-learning model for prediction of shoulder dystocia.

作者信息

Tsur A, Batsry L, Toussia-Cohen S, Rosenstein M G, Barak O, Brezinov Y, Yoeli-Ullman R, Sivan E, Sirota M, Druzin M L, Stevenson D K, Blumenfeld Y J, Aran D

机构信息

Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Department of Obstetrics and Gynecology, The Sheba Medical Center, Tel Hashomer, Israel.

出版信息

Ultrasound Obstet Gynecol. 2020 Oct;56(4):588-596. doi: 10.1002/uog.21878.

Abstract

OBJECTIVES

To develop a machine-learning (ML) model for prediction of shoulder dystocia (ShD) and to externally validate the model's predictive accuracy and potential clinical efficacy in optimizing the use of Cesarean delivery in the context of suspected macrosomia.

METHODS

We used electronic health records (EHR) from the Sheba Medical Center in Israel to develop the model (derivation cohort) and EHR from the University of California San Francisco Medical Center to validate the model's accuracy and clinical efficacy (validation cohort). Subsequent to application of inclusion and exclusion criteria, the derivation cohort included 686 singleton vaginal deliveries, of which 131 were complicated by ShD, and the validation cohort included 2584 deliveries, of which 31 were complicated by ShD. For each of these deliveries, we collected maternal and neonatal delivery outcomes coupled with maternal demographics, obstetric clinical data and sonographic fetal biometry. Biometric measurements and their derived estimated fetal weight were adjusted (aEFW) according to gestational age at delivery. A ML pipeline was utilized to develop the model.

RESULTS

In the derivation cohort, the ML model provided significantly better prediction than did the current clinical paradigm based on fetal weight and maternal diabetes: using nested cross-validation, the area under the receiver-operating-characteristics curve (AUC) of the model was 0.793 ± 0.041, outperforming aEFW combined with diabetes (AUC = 0.745 ± 0.044, P = 1e ). The following risk modifiers had a positive beta that was > 0.02, i.e. they increased the risk of ShD: aEFW (beta = 0.164), pregestational diabetes (beta = 0.047), prior ShD (beta = 0.04), female fetal sex (beta = 0.04) and adjusted abdominal circumference (beta = 0.03). The following risk modifiers had a negative beta that was < -0.02, i.e. they were protective of ShD: adjusted biparietal diameter (beta = -0.08) and maternal height (beta = -0.03). In the validation cohort, the model outperformed aEFW combined with diabetes (AUC = 0.866 vs 0.784, P = 0.00007). Additionally, in the validation cohort, among the subgroup of 273 women carrying a fetus with aEFW ≥ 4000 g, the aEFW had no predictive power (AUC = 0.548), and the model performed significantly better (0.775, P = 0.0002). A risk-score threshold of 0.5 stratified 42.9% of deliveries to the high-risk group, which included 90.9% of ShD cases and all cases accompanied by maternal or newborn complications. A more specific threshold of 0.7 stratified only 27.5% of the deliveries to the high-risk group, which included 63.6% of ShD cases and all those accompanied by newborn complications.

CONCLUSION

We developed a ML model for prediction of ShD and, in a different cohort, externally validated its performance. The model predicted ShD better than did estimated fetal weight either alone or combined with maternal diabetes, and was able to stratify the risk of ShD and neonatal injury in the context of suspected macrosomia. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.

摘要

目的

开发一种机器学习(ML)模型用于预测肩难产(ShD),并在怀疑巨大儿的情况下,对该模型预测准确性和优化剖宫产使用的潜在临床疗效进行外部验证。

方法

我们使用以色列谢巴医疗中心的电子健康记录(EHR)来开发模型(推导队列),并使用加利福尼亚大学旧金山分校医学中心的EHR来验证模型的准确性和临床疗效(验证队列)。在应用纳入和排除标准后,推导队列包括686例单胎阴道分娩,其中131例并发ShD,验证队列包括2584例分娩,其中31例并发ShD。对于这些分娩中的每一例,我们收集了产妇和新生儿分娩结局以及产妇人口统计学、产科临床数据和超声胎儿生物测量数据。根据分娩时的孕周对生物测量值及其推导的估计胎儿体重进行调整(aEFW)。利用一个ML流程来开发模型。

结果

在推导队列中,基于胎儿体重和产妇糖尿病情况,ML模型提供的预测显著优于当前临床范式:使用嵌套交叉验证,该模型的受试者操作特征曲线下面积(AUC)为0.793±0.041,优于aEFW与糖尿病情况联合使用时的AUC(0.745±0.044,P = 1e)。以下风险修正因素的β值为正且大于0.02,即它们增加了ShD的风险:aEFW(β = 0.164)、孕前糖尿病(β = 0.047)、既往ShD(β = 0.04)、胎儿为女性(β = 0.04)和调整后的腹围(β = 0.03)。以下风险修正因素的β值为负且小于 -0.02,即它们具有保护作用:调整后的双顶径(β = -0.08)和产妇身高(β = -0.03)。在验证队列中,该模型优于aEFW与糖尿病情况联合使用时的效果(AUC = 0.866对0.784,P = 0.00007)。此外,在验证队列中,在273例怀有aEFW≥4000g胎儿的女性亚组中,aEFW没有预测能力(AUC = 0.548),而该模型表现明显更好(0.775,P = 0.0002)。风险评分阈值为0.5时,将42.9%的分娩分层到高危组,其中包括90.9%的ShD病例以及所有伴有产妇或新生儿并发症的病例。更特异的阈值0.7仅将27.5%的分娩分层到高危组,其中包括63.6%的ShD病例以及所有伴有新生儿并发症的病例。

结论

我们开发了一种用于预测ShD的ML模型,并在不同队列中对其性能进行了外部验证。该模型预测ShD的能力优于单独的估计胎儿体重或其与产妇糖尿病情况联合使用时的效果,并且能够在怀疑巨大儿的情况下对ShD和新生儿损伤风险进行分层。版权所有©️2019国际妇产科超声学会。由约翰·威利父子有限公司出版。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验