Suppr超能文献

现有的基于单目计算机视觉的 3D 运动捕捉方法是否已经准备好部署?以高山滑雪为例的方法学研究。

Are Existing Monocular Computer Vision-Based 3D Motion Capture Approaches Ready for Deployment? A Methodological Study on the Example of Alpine Skiing.

机构信息

Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia.

出版信息

Sensors (Basel). 2019 Oct 6;19(19):4323. doi: 10.3390/s19194323.

Abstract

In this study, we compared a monocular computer vision (MCV)-based approach with the golden standard for collecting kinematic data on ski tracks (i.e., video-based stereophotogrammetry) and assessed its deployment readiness for answering applied research questions in the context of alpine skiing. The investigated MCV-based approach predicted the three-dimensional human pose and ski orientation based on the image data from a single camera. The data set used for training and testing the underlying deep nets originated from a field experiment with six competitive alpine skiers. The normalized mean per joint position error of the MVC-based approach was found to be 0.08 ± 0.01m. Knee flexion showed an accuracy and precision (in parenthesis) of 0.4 ± 7.1° (7.2 ± 1.5°) for the outside leg, and -0.2 ± 5.0° (6.7 ± 1.1°) for the inside leg. For hip flexion, the corresponding values were -0.4 ± 6.1° (4.4° ± 1.5°) and -0.7 ± 4.7° (3.7 ± 1.0°), respectively. The accuracy and precision of skiing-related metrics were revealed to be 0.03 ± 0.01 m (0.01 ± 0.00 m) for relative center of mass position, -0.1 ± 3.8° (3.4 ± 0.9) for lean angle, 0.01 ± 0.03 m (0.02 ± 0.01 m) for center of mass to outside ankle distance, 0.01 ± 0.05 m (0.03 ± 0.01 m) for fore/aft position, and 0.00 ± 0.01 m (0.01 ± 0.00 m) for drag area. Such magnitudes can be considered acceptable for detecting relevant differences in the context of alpine skiing.

摘要

在这项研究中,我们将基于单目计算机视觉 (MCV) 的方法与用于收集滑雪轨迹运动学数据的黄金标准(即基于视频的立体摄影测量法)进行了比较,并评估了其在回答高山滑雪背景下应用研究问题方面的准备就绪情况。所研究的基于 MCV 的方法基于单个摄像机的图像数据来预测三维人体姿势和滑雪方向。用于训练和测试基础深度网络的数据集源自一项具有六名竞技高山滑雪运动员的现场实验。基于 MCV 的方法的归一化平均每个关节位置误差被发现为 0.08 ± 0.01m。对于外侧腿,膝关节弯曲的准确度和精度(在括号中)为 0.4 ± 7.1°(7.2 ± 1.5°),对于内侧腿,准确度和精度为 -0.2 ± 5.0°(6.7 ± 1.1°)。对于髋关节弯曲,相应的值分别为 -0.4 ± 6.1°(4.4° ± 1.5°)和 -0.7 ± 4.7°(3.7 ± 1.0°)。滑雪相关指标的准确度和精度被发现为质心位置的相对位置 0.03 ± 0.01 m(0.01 ± 0.00 m),倾斜角 -0.1 ± 3.8°(3.4 ± 0.9),质心到外侧脚踝的距离 0.01 ± 0.03 m(0.02 ± 0.01 m),前后位置 0.01 ± 0.05 m(0.03 ± 0.01 m),阻力面积 0.00 ± 0.01 m(0.01 ± 0.00 m)。在高山滑雪的背景下,这些幅度可以被认为足以检测到相关差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd08/6806076/41ea4bc83896/sensors-19-04323-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验