Suppr超能文献

基于多糖羧甲基纤维素、细菌纤维素和柠檬酸的分级多孔碳用于超级电容器。

Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor.

机构信息

College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.

出版信息

Carbohydr Polym. 2020 Jan 1;227:115346. doi: 10.1016/j.carbpol.2019.115346. Epub 2019 Sep 21.

Abstract

This study reports excellent supercapacitor performance of hierarchical composite porous carbon (HPC) materials successfully fabricated by one-step carbonization and activation process derived from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid. The resultant HPC displayed unique porous nanosheet morphology with high specific surface area (2490 m g) and rich oxygen content (7.3%). The developed structures with macropores, mesopore walls, micropores, and high oxygen content led to excellent electrochemical performance for electrode of electric double-layer capacitors (EDLCs). In a three-electrode system, the HPC electrode showed a high specific capacitance of 350 F g, good rate performance, and excellent cycling stability. The energy density of supercapacitor based on HPC was comparable to or higher than that of commercially supercapacitors. More importantly, two series-wound devices were easy to light light-emitting diode (LED, 3.0 V). These results suggest that the current material is a promising candidate for low-cost and eco-friendly energy storage devices.

摘要

本研究报告了由多糖羧甲基纤维素、细菌纤维素和柠檬酸一步碳化和活化工艺成功制备的分级复合多孔碳(HPC)材料的优异超级电容器性能。所得 HPC 呈现独特的多孔纳米片形态,具有高比表面积(2490 m g)和丰富的氧含量(7.3%)。这种具有大孔、中孔壁、微孔和高氧含量的结构导致了电极的双电层电容器(EDLCs)的优异电化学性能。在三电极系统中,HPC 电极表现出 350 F g 的高比电容、良好的倍率性能和优异的循环稳定性。基于 HPC 的超级电容器的能量密度可与或高于商用超级电容器。更重要的是,两个串联装置可以轻松点亮发光二极管(LED,3.0 V)。这些结果表明,该材料是一种有前途的低成本和环保储能器件的候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验