Suppr超能文献

基于幅度的空间角度局部低秩正则化(SPA-LLR)的多帧扩散加权磁共振成像重建

Multi-shot diffusion-weighted MRI reconstruction with magnitude-based spatial-angular locally low-rank regularization (SPA-LLR).

作者信息

Hu Yuxin, Wang Xiaole, Tian Qiyuan, Yang Grant, Daniel Bruce, McNab Jennifer, Hargreaves Brian

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California.

Department of Radiology, Stanford University, Stanford, California.

出版信息

Magn Reson Med. 2020 May;83(5):1596-1607. doi: 10.1002/mrm.28025. Epub 2019 Oct 8.

Abstract

PURPOSE

To resolve the motion-induced phase variations in multi-shot multi-direction diffusion-weighted imaging (DWI) by applying regularization to magnitude images.

THEORY AND METHODS

A nonlinear model was developed to estimate phase and magnitude images separately. A locally low-rank regularization (LLR) term was applied to the magnitude images from all diffusion-encoding directions to exploit the spatial and angular correlation. In vivo experiments with different resolutions and b-values were performed to validate the proposed method.

RESULTS

The proposed method significantly reduces the noise level compared to the conventional reconstruction method and achieves submillimeter (0.8mm and 0.9mm isotropic resolutions) DWI with a b-value of 1,000  and 1-mm isotropic DWI with a b-value of 2,000  without modification of the sequence.

CONCLUSIONS

A joint reconstruction method with spatial-angular LLR regularization on magnitude images substantially improves multi-direction DWI reconstruction, simultaneously removes motion-induced phase artifacts, and denoises images.

摘要

目的

通过对幅值图像应用正则化来解决多次激发多方向扩散加权成像(DWI)中运动引起的相位变化。

理论与方法

开发了一种非线性模型来分别估计相位和幅值图像。对来自所有扩散编码方向的幅值图像应用局部低秩正则化(LLR)项,以利用空间和角度相关性。进行了不同分辨率和b值的体内实验,以验证所提出的方法。

结果

与传统重建方法相比,所提出的方法显著降低了噪声水平,并且在不修改序列的情况下实现了b值为1000时的亚毫米(0.8毫米和0.9毫米各向同性分辨率)DWI以及b值为2000时的1毫米各向同性DWI。

结论

对幅值图像进行空间-角度LLR正则化的联合重建方法显著改善了多方向DWI重建,同时消除了运动引起的相位伪影并对图像进行了去噪。

相似文献

10
A Paired Phase and Magnitude Reconstruction for Advanced Diffusion-Weighted Imaging.一种高级弥散加权成像的相位和幅度重建方法。
IEEE Trans Biomed Eng. 2023 Dec;70(12):3425-3435. doi: 10.1109/TBME.2023.3288031. Epub 2023 Nov 21.

引用本文的文献

9
Convolutional network denoising for acceleration of multi-shot diffusion MRI.卷积网络去噪加速多-shot 扩散 MRI。
Magn Reson Imaging. 2024 Jan;105:108-113. doi: 10.1016/j.mri.2023.10.002. Epub 2023 Nov 19.

本文引用的文献

8
General phase regularized reconstruction using phase cycling.使用相循环的常规相重建。
Magn Reson Med. 2018 Jul;80(1):112-125. doi: 10.1002/mrm.27011. Epub 2017 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验