Suppr超能文献

基于模型的迭代重建用于编码点扩散函数的直接成像回波平面 MRI。

Model-based iterative reconstruction for direct imaging with point spread function encoded echo planar MRI.

机构信息

Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

出版信息

Magn Reson Imaging. 2024 Jun;109:189-202. doi: 10.1016/j.mri.2024.03.009. Epub 2024 Mar 13.

Abstract

BACKGROUND

Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential.

METHODS

An MBIR platform was developed for accelerated PSF-EPI. The reconstruction utilizes a subspace representation, is regularized to promote local low-rankedness (LLR), and uses variable splitting for efficient iteration. Comparisons were made against standard reconstructions from prospectively accelerated PSF-EPI data and with retrospective subsampling. Exploring aggressive partial Fourier acceleration of the PSF-encoding dimension, additional comparisons were made against an extension of Homodyne to direct PSF-EPI in numerical experiments. A neuroradiologists' assessment was completed comparing images reconstructed with MBIR from retrospectively truncated data directly against images obtained with standard reconstructions from non-truncated datasets.

RESULTS

Image quality results were consistently superior for MBIR relative to standard and Homodyne reconstructions. As the MBIR signal model and reconstruction allow for arbitrary sampling of the PSF space, random sampling of the PSF-encoding dimension was also demonstrated, with quantitative assessments indicating best performance achieved through nonuniform PSF sampling combined with partial Fourier. With retrospective subsampling, MBIR reconstructs high-quality images from sub-minute scan datasets. MBIR was shown to be superior in a neuroradiologists' assessment with respect to three of five performance criteria, with equivalence for the remaining two.

CONCLUSIONS

A novel image reconstruction framework is introduced for direct imaging with PSF-EPI, enabling arbitrary PSF space sampling and reconstruction of diagnostic-quality images from highly accelerated PSF-encoded EPI data.

摘要

背景

平面回波成像(EPI)是磁共振成像(MRI)中常用的快速测量技术,但对重建中的测量不理想情况非常敏感。点扩散函数(PSF)-编码 EPI 是一种减轻失真的多-shot 策略,但获取适合直接无失真成像的编码会延长扫描时间。在这项工作中,引入了一种基于模型的迭代重建(MBIR)框架,用于 PSF-EPI 的直接成像,以提高图像质量和加速潜力。

方法

为加速 PSF-EPI 开发了一种 MBIR 平台。该重建利用子空间表示,正则化以促进局部低秩性(LLR),并使用变量分裂进行高效迭代。与前瞻性加速 PSF-EPI 数据的标准重建和回顾性抽样进行了比较。通过探索 PSF 编码维数的激进部分傅里叶加速,在数值实验中还与 Homodyne 扩展到直接 PSF-EPI 进行了额外的比较。通过回顾性截断数据直接与标准重建从非截断数据集获得的图像进行比较,完成了神经放射学家的评估。

结果

与标准和 Homodyne 重建相比,MBIR 的图像质量始终更好。由于 MBIR 信号模型和重建允许对 PSF 空间进行任意采样,因此还展示了 PSF 编码维数的随机采样,定量评估表明,通过非均匀 PSF 采样与部分傅里叶相结合可以获得最佳性能。通过回顾性抽样,MBIR 可以从亚分钟扫描数据集重建高质量的图像。在神经放射学家的评估中,MBIR 在五个性能标准中的三个方面表现更好,另外两个方面则相当。

结论

引入了一种用于 PSF-EPI 直接成像的新型图像重建框架,能够对高度加速的 PSF 编码 EPI 数据进行任意 PSF 空间采样和重建诊断质量的图像。

相似文献

7
Echo planar time-resolved imaging (EPTI).磁共振成像中的时间分辨技术。
Magn Reson Med. 2019 Jun;81(6):3599-3615. doi: 10.1002/mrm.27673. Epub 2019 Feb 3.

本文引用的文献

9
Echo planar time-resolved imaging (EPTI).磁共振成像中的时间分辨技术。
Magn Reson Med. 2019 Jun;81(6):3599-3615. doi: 10.1002/mrm.27673. Epub 2019 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验