Liu Pengchao, Mao Zhengyi, Zhao Yan, Yin Jian'an, Chu Chengshengze, Chen Xuliang, Lu Jian
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
CityU-Shenzhen Futian Research Institute, Shenzhen, China.
Adv Sci (Weinh). 2024 Jun;11(24):e2307830. doi: 10.1002/advs.202307830. Epub 2024 Apr 8.
Reconfiguration of architected structures has great significance for achieving new topologies and functions of engineering materials. Existing reconfigurable strategies have been reported, including approaches based on heat, mechanical instability, swelling, origami/kirigami designs, and electromagnetic actuation. However, these approaches mainly involve physical interactions between the host materials and the relevant stimuli. Herein, a novel, easy-manipulated, and controllable reconfiguration strategy for polymer architectures is proposed by using a chemical reaction of host material within a hydrogel reactive microenvironment. 3D printed polycaprolactone (PCL) lattices transformed in an aqueous polyacrylamide (PAAm) hydrogel precursor solution, in which ultraviolet (UV) light triggered heterogeneous grafting polymerization between PCL and AAm. In situ microscopy shows that PCL beams go through volumetric expansion and cooperative buckling, resulting in transformation of PCL lattices into sinusoidal patterns. The transformation process can be tuned easily and patterned through the adjustment of the PCL beam diameter, unit cell width, and UV light on-off state. Controlling domain formation is achieved by using UV masks. This framework enables the design, fabrication, and programming of architected materials and inspires the development of novel 4D printing approaches.
构建结构的重新配置对于实现工程材料的新拓扑结构和功能具有重要意义。已有报道的现有可重构策略,包括基于热、机械不稳定性、膨胀、折纸/剪纸设计以及电磁驱动的方法。然而,这些方法主要涉及主体材料与相关刺激之间的物理相互作用。在此,通过利用主体材料在水凝胶反应性微环境中的化学反应,提出了一种用于聚合物结构的新颖、易于操作且可控的重新配置策略。3D打印的聚己内酯(PCL)晶格在聚丙烯酰胺(PAAm)水凝胶前体溶液中发生转变,其中紫外线(UV)光引发了PCL与AAm之间的非均相接枝聚合反应。原位显微镜显示PCL梁经历体积膨胀和协同屈曲,导致PCL晶格转变为正弦图案。通过调整PCL梁直径、单位晶胞宽度和UV光开关状态,可以轻松调整并对转变过程进行图案化。通过使用UV掩膜实现了对畴形成的控制。该框架能够实现对构建材料的设计、制造和编程,并激发了新型4D打印方法的发展。