Department of Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur 208 016 , Uttar Pradesh , India.
Mass Spectrometry and Proteomics Core Facility , University of Nebraska Medical Center , Omaha 68198 , Nebraska , United States.
Mol Pharm. 2019 Nov 4;16(11):4738-4750. doi: 10.1021/acs.molpharmaceut.9b00959. Epub 2019 Oct 22.
Recombinant adeno-associated virus (AAV)-based gene therapy has been promising, but several host-related transduction or immune challenges remain. For this mode of therapy to be widely applicable, it is crucial to develop high transduction and permeating vectors that infect the target at significantly low doses. Because glycosylation of capsid proteins is known to be rate limiting in the life cycle of many viruses, we reasoned that perturbation of glycosylation sites in AAV2 capsid will enhance gene delivery. In our first set experiments, pharmacological modulation of the glycosylation status in host cells, modestly decreased (1-fold) AAV2 packaging efficacy while it improved their gene expression (∼74%) in vitro. We then generated 24 mutant AAV2 vectors modified to potentially create or disrupt a glycosylation site in its capsid. Three of them demonstrated a 1.3-2.5-fold increase in transgene expression in multiple cell lines (HeLa, Huh7, and ARPE-19). Hepatic gene transfer of these vectors in hemophilia B mice, resulted in a 2-fold increase in human coagulation factor (F)IX levels, while its T/B-cell immunogenic response was unaltered. Subsequently, intravitreal gene transfer of glycosylation site-modified vectors in C57BL6/J mice demonstrated an increase in green fluorescence protein expression (∼2- to 4-fold) and enhanced permeation across retina. Subretinal administration of these modified vectors containing RPE65 gene further rescued the photoreceptor response in a murine model of Leber congenital amarousis. Our studies highlight the translational potential of glycosylation site-modified AAV2 vectors for hepatic and ocular gene therapy applications.
基于重组腺相关病毒(AAV)的基因治疗很有前途,但仍存在一些与宿主相关的转导或免疫挑战。为了使这种治疗模式得到广泛应用,开发高转导和渗透的载体以低剂量感染靶标至关重要。由于衣壳蛋白的糖基化已知是许多病毒生命周期中的限速步骤,我们推断 AAV2 衣壳中的糖基化位点的扰动将增强基因传递。在我们的第一个实验中,宿主细胞中糖基化状态的药理学调节适度降低(1 倍)AAV2 包装效率,同时提高其体外基因表达(约 74%)。然后,我们生成了 24 种突变的 AAV2 载体,这些载体经过修饰后可能会在其衣壳中创建或破坏糖基化位点。其中三种在多种细胞系(HeLa、Huh7 和 ARPE-19)中显示出转染基因表达增加 1.3-2.5 倍。在血友病 B 小鼠中,这些载体的肝基因转移导致人凝血因子(F)IX 水平增加 2 倍,而其 T/B 细胞免疫原性反应未改变。随后,在 C57BL6/J 小鼠中经玻璃体内基因转移修饰后的糖基化位点载体,绿色荧光蛋白表达增加(约 2-4 倍),并增强了穿过视网膜的渗透。含有 RPE65 基因的这些修饰载体的视网膜下给药进一步挽救了莱伯先天性黑蒙的小鼠模型中的光感受器反应。我们的研究强调了糖基化位点修饰的 AAV2 载体在肝和眼部基因治疗应用中的转化潜力。