Suppr超能文献

ICM 中的大环建模:D3R 大挑战 4 的基准测试和评估。

Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4.

机构信息

Molsoft L.L.C., 11199 Sorrento Valley Road, S209, San Diego, CA, 92121, USA.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.

出版信息

J Comput Aided Mol Des. 2019 Dec;33(12):1057-1069. doi: 10.1007/s10822-019-00225-9. Epub 2019 Oct 9.

Abstract

Macrocycles represent a potentially vast extension of drug chemical space still largely untapped by synthetic compounds. Sampling of flexible rings is incorporated in the ICM-dock protocol. We tested the ability of ICM-dock to reproduce macrocyclic ligand-protein receptor complexes, first in a large retrospective benchmark (246 complexes), and next, in context of the D3R Grand Challenge 4 (GC4), where we modeled bound complexes and predicted activities for a series of macrocyclic BACE inhibitors. Sub-angstrom accuracy was achieved in ligand pose prediction both in cross-docking (D3R Challenge Stage 1A) and cognate (Stage 1B) setup. Stage 1B submission was top ranked by mean and average RMSDs, even though no ligand knowledge was used in our simulations on this Stage. Furthermore, we demonstrate successful receptor conformational selection in Stage 1A, aided by the enhanced '4D' multiple receptor conformation docking protocol with optimized scoring offsets. In the activity 3D QSAR modeling, predictivity of the BACE pKd model was modest, while for the second target (Cathepsin-S), leading performance was achieved. Difference in activity prediction performance between the targets is likely explained by the amount of available and relevant training data.

摘要

大环化合物代表了药物化学空间的一个潜在的广阔扩展,目前仍然很大程度上没有被合成化合物所利用。灵活环的采样被纳入了 ICM-dock 协议中。我们测试了 ICM-dock 重现大环配体-蛋白受体复合物的能力,首先在一个大型的回顾性基准测试(246 个复合物)中进行,然后在 D3R 大挑战 4(GC4)中进行,在该测试中,我们对一系列大环 BACE 抑制剂的结合复合物进行建模并预测了它们的活性。在配体构象预测中,无论是在交叉对接(D3R 挑战阶段 1A)还是同源对接(阶段 1B)中,都达到了亚埃精度。尽管在这个阶段的模拟中没有使用配体知识,但我们的阶段 1B 提交在平均和平均 RMSD 方面排名最高。此外,我们通过优化评分偏移的增强的“4D”多个受体构象对接协议,在阶段 1A 中成功地进行了受体构象选择。在活性 3D QSAR 建模中,BACE pKd 模型的预测能力适中,而对于第二个目标(Cathepsin-S),则取得了领先的性能。目标之间的活性预测性能的差异可能是由于可用和相关的训练数据量的不同造成的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验