Suppr超能文献

D3R 大挑战 4:使用 AutoDock-GPU 对 BACE1 配体进行前瞻性构象预测。

D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU.

机构信息

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, USA.

Embedded Systems and Applications Group, Technische Universität Darmstadt, Darmstadt, Germany.

出版信息

J Comput Aided Mol Des. 2019 Dec;33(12):1071-1081. doi: 10.1007/s10822-019-00241-9. Epub 2019 Nov 6.

Abstract

In this paper we describe our approaches to predict the binding mode of twenty BACE1 ligands as part of Grand Challenge 4 (GC4), organized by the Drug Design Data Resource. Calculations for all submissions (except for one, which used AutoDock4.2) were performed using AutoDock-GPU, the new GPU-accelerated version of AutoDock4 implemented in OpenCL, which features a gradient-based local search. The pose prediction challenge was organized in two stages. In Stage 1a, the protein conformations associated with each of the ligands were undisclosed, so we docked each ligand to a set of eleven receptor conformations, chosen to maximize the diversity of binding pocket topography. Protein conformations were made available in Stage 1b, making it a re-docking task. For all calculations, macrocyclic conformations were sampled on the fly during docking, taking the target structure into account. To leverage information from existing structures containing BACE1 bound to ligands available in the PDB, we tested biased docking and pose filter protocols to facilitate poses resembling those experimentally determined. Both pose filters and biased docking resulted in more accurate docked poses, enabling us to predict for both Stages 1a and 1b ligand poses within 2 Å RMSD from the crystallographic pose. Nevertheless, many of the ligands could be correctly docked without using existing structural information, demonstrating the usefulness of physics-based scoring functions, such as the one used in AutoDock4, for structure based drug design.

摘要

在本文中,我们描述了我们预测 20 种 BACE1 配体结合模式的方法,这是由 Drug Design Data Resource 组织的 Grand Challenge 4(GC4)的一部分。除了一个使用 AutoDock4.2 的提交之外,所有提交的计算都是使用 AutoDock-GPU 进行的,这是一种在 OpenCL 中实现的新的 GPU 加速版 AutoDock4,它具有基于梯度的局部搜索功能。姿势预测挑战分为两个阶段。在第一阶段 a 中,与每个配体相关的蛋白质构象是不公开的,因此我们将每个配体对接至一组 11 个受体构象,这些构象的选择旨在最大化结合口袋拓扑结构的多样性。在第一阶段 b 中提供了蛋白质构象,使其成为重新对接任务。对于所有计算,在对接过程中动态采样大环构象,同时考虑目标结构。为了利用包含与 PDB 中可用的 BACE1 结合的配体的现有结构中的信息,我们测试了有偏差的对接和姿势过滤器协议,以促进与实验确定的相似的姿势。姿势过滤器和有偏差的对接都产生了更准确的对接姿势,使我们能够在 Stage 1a 和 1b 中预测出与晶体学姿势的 RMSD 均在 2Å 以内的配体姿势。尽管如此,许多配体可以在不使用现有结构信息的情况下正确对接,这表明基于物理的评分函数(如 AutoDock4 中使用的函数)对于基于结构的药物设计非常有用。

相似文献

引用本文的文献

6
Supercomputing Pipelines Search for Therapeutics Against COVID-19.超级计算管道寻找抗 COVID-19 的疗法。
Comput Sci Eng. 2020 Nov 6;23(1):7-16. doi: 10.1109/MCSE.2020.3036540. eCollection 2021 Jan.
7
Accelerating AutoDock Vina with GPUs.使用 GPU 加速 AutoDock Vina。
Molecules. 2022 May 9;27(9):3041. doi: 10.3390/molecules27093041.
10
Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.

本文引用的文献

3
Overview of the SAMPL6 host-guest binding affinity prediction challenge.SAMPL6 主客体结合亲和力预测挑战概述。
J Comput Aided Mol Des. 2018 Oct;32(10):937-963. doi: 10.1007/s10822-018-0170-6. Epub 2018 Nov 10.
7
Overview of the SAMPL5 host-guest challenge: Are we doing better?SAMPL5主客体挑战概述:我们是否取得了进步?
J Comput Aided Mol Des. 2017 Jan;31(1):1-19. doi: 10.1007/s10822-016-9974-4. Epub 2016 Sep 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验