Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, USA.
Embedded Systems and Applications Group, Technische Universität Darmstadt, Darmstadt, Germany.
J Comput Aided Mol Des. 2019 Dec;33(12):1071-1081. doi: 10.1007/s10822-019-00241-9. Epub 2019 Nov 6.
In this paper we describe our approaches to predict the binding mode of twenty BACE1 ligands as part of Grand Challenge 4 (GC4), organized by the Drug Design Data Resource. Calculations for all submissions (except for one, which used AutoDock4.2) were performed using AutoDock-GPU, the new GPU-accelerated version of AutoDock4 implemented in OpenCL, which features a gradient-based local search. The pose prediction challenge was organized in two stages. In Stage 1a, the protein conformations associated with each of the ligands were undisclosed, so we docked each ligand to a set of eleven receptor conformations, chosen to maximize the diversity of binding pocket topography. Protein conformations were made available in Stage 1b, making it a re-docking task. For all calculations, macrocyclic conformations were sampled on the fly during docking, taking the target structure into account. To leverage information from existing structures containing BACE1 bound to ligands available in the PDB, we tested biased docking and pose filter protocols to facilitate poses resembling those experimentally determined. Both pose filters and biased docking resulted in more accurate docked poses, enabling us to predict for both Stages 1a and 1b ligand poses within 2 Å RMSD from the crystallographic pose. Nevertheless, many of the ligands could be correctly docked without using existing structural information, demonstrating the usefulness of physics-based scoring functions, such as the one used in AutoDock4, for structure based drug design.
在本文中,我们描述了我们预测 20 种 BACE1 配体结合模式的方法,这是由 Drug Design Data Resource 组织的 Grand Challenge 4(GC4)的一部分。除了一个使用 AutoDock4.2 的提交之外,所有提交的计算都是使用 AutoDock-GPU 进行的,这是一种在 OpenCL 中实现的新的 GPU 加速版 AutoDock4,它具有基于梯度的局部搜索功能。姿势预测挑战分为两个阶段。在第一阶段 a 中,与每个配体相关的蛋白质构象是不公开的,因此我们将每个配体对接至一组 11 个受体构象,这些构象的选择旨在最大化结合口袋拓扑结构的多样性。在第一阶段 b 中提供了蛋白质构象,使其成为重新对接任务。对于所有计算,在对接过程中动态采样大环构象,同时考虑目标结构。为了利用包含与 PDB 中可用的 BACE1 结合的配体的现有结构中的信息,我们测试了有偏差的对接和姿势过滤器协议,以促进与实验确定的相似的姿势。姿势过滤器和有偏差的对接都产生了更准确的对接姿势,使我们能够在 Stage 1a 和 1b 中预测出与晶体学姿势的 RMSD 均在 2Å 以内的配体姿势。尽管如此,许多配体可以在不使用现有结构信息的情况下正确对接,这表明基于物理的评分函数(如 AutoDock4 中使用的函数)对于基于结构的药物设计非常有用。