Suppr超能文献

预测 CELPP 和 GC3 的蛋白-配体结合模式:工作流程和见解。

Predicting protein-ligand binding modes for CELPP and GC3: workflows and insight.

机构信息

Dalton Cardiovascular Research Center, University of Missouri, 65211, Columbia, MO, USA.

Department of Physics and Astronomy, University of Missouri, 65211, Columbia, MO, USA.

出版信息

J Comput Aided Mol Des. 2019 Mar;33(3):367-374. doi: 10.1007/s10822-019-00185-0. Epub 2019 Jan 28.

Abstract

Drug Design Data Resource (D3R) continues to release valuable benchmarking datasets to promote improvement and development of computational methods for new drug discovery. We have developed several methods for protein-ligand binding mode prediction during the participation in the D3R challenges. In the present study, these methods were integrated, automated, and systematically tested using the large-scale data from Continuous Evaluation of Ligand Pose Prediction (CELPP) and a subset of Grand challenge 3 (GC3). The results show that current molecular docking methods benefit from the increasing number of protein-ligand complex structures deposited in Protein Data Bank. Using an appropriate protein structure for docking significantly improves the success rate of the binding mode prediction. The results of our template-based method and docking method are compared and discussed. Our future direction include the combination of these two methods for binding mode prediction.

摘要

药物设计数据资源(D3R)继续发布有价值的基准数据集,以促进新药物发现计算方法的改进和发展。我们在参与 D3R 挑战赛期间开发了几种用于预测蛋白质-配体结合模式的方法。在本研究中,这些方法使用来自连续评估配体构象预测(CELPP)的大规模数据和 Grand challenge 3(GC3)的子集进行了集成、自动化和系统测试。结果表明,当前的分子对接方法受益于越来越多的蛋白质-配体复合物结构储存在蛋白质数据库中。使用适当的蛋白质结构进行对接可以显著提高结合模式预测的成功率。比较和讨论了我们基于模板的方法和对接方法的结果。我们未来的方向包括将这两种方法结合用于结合模式预测。

相似文献

1
Predicting protein-ligand binding modes for CELPP and GC3: workflows and insight.
J Comput Aided Mol Des. 2019 Mar;33(3):367-374. doi: 10.1007/s10822-019-00185-0. Epub 2019 Jan 28.
2
Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
J Comput Aided Mol Des. 2019 Jan;33(1):47-59. doi: 10.1007/s10822-018-0142-x. Epub 2018 Aug 6.
4
Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
J Comput Aided Mol Des. 2019 Dec;33(12):1045-1055. doi: 10.1007/s10822-019-00220-0. Epub 2019 Aug 28.
5
Continuous Evaluation of Ligand Protein Predictions: A Weekly Community Challenge for Drug Docking.
Structure. 2019 Aug 6;27(8):1326-1335.e4. doi: 10.1016/j.str.2019.05.012. Epub 2019 Jun 27.
6
Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016.
J Comput Aided Mol Des. 2018 Jan;32(1):113-127. doi: 10.1007/s10822-017-0053-2. Epub 2017 Sep 14.
7
Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor.
J Comput Aided Mol Des. 2018 Jan;32(1):103-111. doi: 10.1007/s10822-017-0082-x. Epub 2017 Nov 10.
8
D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings.
J Comput Aided Mol Des. 2019 Jan;33(1):1-18. doi: 10.1007/s10822-018-0180-4. Epub 2019 Jan 10.
9
Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort.
J Comput Aided Mol Des. 2018 Jan;32(1):129-142. doi: 10.1007/s10822-017-0072-z. Epub 2017 Oct 6.
10
Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2.
J Comput Aided Mol Des. 2018 Jan;32(1):251-264. doi: 10.1007/s10822-017-0051-4. Epub 2017 Aug 24.

引用本文的文献

1
Template-guided method for protein-ligand complex structure prediction: Application to CASP15 protein-ligand studies.
Proteins. 2023 Dec;91(12):1829-1836. doi: 10.1002/prot.26535. Epub 2023 Jun 7.
2
CSAlign and CSAlign-Dock: Structure alignment of ligands considering full flexibility and application to protein-ligand docking.
Comput Struct Biotechnol J. 2022 Nov 26;21:1-10. doi: 10.1016/j.csbj.2022.11.047. eCollection 2023.
4
Structural Prediction of Peptide-MHC Binding Modes.
Methods Mol Biol. 2022;2405:245-282. doi: 10.1007/978-1-0716-1855-4_13.
6
Modulating the voltage sensor of a cardiac potassium channel shows antiarrhythmic effects.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2024215118.
7
A PIP substitute mediates voltage sensor-pore coupling in KCNQ activation.
Commun Biol. 2020 Jul 16;3(1):385. doi: 10.1038/s42003-020-1104-0.
8
Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4.
J Comput Aided Mol Des. 2019 Dec;33(12):1057-1069. doi: 10.1007/s10822-019-00225-9. Epub 2019 Oct 9.

本文引用的文献

1
Docking-based inverse virtual screening: methods, applications, and challenges.
Biophys Rep. 2018;4(1):1-16. doi: 10.1007/s41048-017-0045-8. Epub 2018 Feb 1.
2
D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies.
J Comput Aided Mol Des. 2018 Jan;32(1):1-20. doi: 10.1007/s10822-017-0088-4. Epub 2017 Dec 4.
3
Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor.
J Comput Aided Mol Des. 2018 Jan;32(1):103-111. doi: 10.1007/s10822-017-0082-x. Epub 2017 Nov 10.
5
D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions.
J Comput Aided Mol Des. 2016 Sep;30(9):651-668. doi: 10.1007/s10822-016-9946-8. Epub 2016 Sep 30.
6
CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma.
J Chem Inf Model. 2016 Jun 27;56(6):1063-77. doi: 10.1021/acs.jcim.5b00523. Epub 2016 May 17.
7
CSAR Benchmark Exercise 2013: Evaluation of Results from a Combined Computational Protein Design, Docking, and Scoring/Ranking Challenge.
J Chem Inf Model. 2016 Jun 27;56(6):1022-31. doi: 10.1021/acs.jcim.5b00387. Epub 2015 Oct 9.
9
Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design.
Molecules. 2014 Jul 11;19(7):10150-76. doi: 10.3390/molecules190710150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验