预测 CELPP 和 GC3 的蛋白-配体结合模式:工作流程和见解。
Predicting protein-ligand binding modes for CELPP and GC3: workflows and insight.
机构信息
Dalton Cardiovascular Research Center, University of Missouri, 65211, Columbia, MO, USA.
Department of Physics and Astronomy, University of Missouri, 65211, Columbia, MO, USA.
出版信息
J Comput Aided Mol Des. 2019 Mar;33(3):367-374. doi: 10.1007/s10822-019-00185-0. Epub 2019 Jan 28.
Drug Design Data Resource (D3R) continues to release valuable benchmarking datasets to promote improvement and development of computational methods for new drug discovery. We have developed several methods for protein-ligand binding mode prediction during the participation in the D3R challenges. In the present study, these methods were integrated, automated, and systematically tested using the large-scale data from Continuous Evaluation of Ligand Pose Prediction (CELPP) and a subset of Grand challenge 3 (GC3). The results show that current molecular docking methods benefit from the increasing number of protein-ligand complex structures deposited in Protein Data Bank. Using an appropriate protein structure for docking significantly improves the success rate of the binding mode prediction. The results of our template-based method and docking method are compared and discussed. Our future direction include the combination of these two methods for binding mode prediction.
药物设计数据资源(D3R)继续发布有价值的基准数据集,以促进新药物发现计算方法的改进和发展。我们在参与 D3R 挑战赛期间开发了几种用于预测蛋白质-配体结合模式的方法。在本研究中,这些方法使用来自连续评估配体构象预测(CELPP)的大规模数据和 Grand challenge 3(GC3)的子集进行了集成、自动化和系统测试。结果表明,当前的分子对接方法受益于越来越多的蛋白质-配体复合物结构储存在蛋白质数据库中。使用适当的蛋白质结构进行对接可以显著提高结合模式预测的成功率。比较和讨论了我们基于模板的方法和对接方法的结果。我们未来的方向包括将这两种方法结合用于结合模式预测。