Suppr超能文献

迈向基于机器学习的脑深部电刺激(DBS)术中疗效图谱预测

Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps.

作者信息

Bermudez Camilo, Rodriguez William, Huo Yuankai, Hainline Allison E, Li Rui, Shults Robert, D'Haese Pierre D, Konrad Peter E, Dawant Benoit M, Landman Bennett A

机构信息

Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, USA 37235.

Department of Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, USA 37235.

出版信息

Proc SPIE Int Soc Opt Eng. 2019 Mar;10949. doi: 10.1117/12.2509728.

Abstract

Deep brain stimulation (DBS) has the potential to improve the quality of life of people with a variety of neurological diseases. A key challenge in DBS is in the placement of a stimulation electrode in the anatomical location that maximizes efficacy and minimizes side effects. Pre-operative localization of the optimal stimulation zone can reduce surgical times and morbidity. Current methods of producing efficacy probability maps follow an anatomical guidance on magnetic resonance imaging (MRI) to identify the areas with the highest efficacy in a population. In this work, we propose to revisit this problem as a classification problem, where each voxel in the MRI is a sample informed by the surrounding anatomy. We use a patch-based convolutional neural network to classify a stimulation coordinate as having a positive reduction in symptoms during surgery. We use a cohort of 187 patients with a total of 2,869 stimulation coordinates, upon which 3D patches were extracted and associated with an efficacy score. We compare our results with a registration-based method of surgical planning. We show an improvement in the classification of intraoperative stimulation coordinates as a positive response in reduction of symptoms with AUC of 0.670 compared to a baseline registration-based approach, which achieves an AUC of 0.627 (p < 0.01). Although additional validation is needed, the proposed classification framework and deep learning method appear well-suited for improving pre-surgical planning and personalize treatment strategies.

摘要

深部脑刺激(DBS)有潜力改善患有各种神经疾病患者的生活质量。DBS的一个关键挑战在于将刺激电极放置在能使疗效最大化且副作用最小化的解剖位置。术前对最佳刺激区域进行定位可减少手术时间和发病率。当前生成疗效概率图的方法遵循磁共振成像(MRI)上的解剖学指导,以识别群体中疗效最高的区域。在这项工作中,我们提议将此问题重新视为一个分类问题,其中MRI中的每个体素都是一个由周围解剖结构提供信息的样本。我们使用基于补丁的卷积神经网络将刺激坐标分类为在手术期间症状有正向减轻。我们使用了一组187名患者共2869个刺激坐标,从中提取3D补丁并将其与疗效评分相关联。我们将我们的结果与基于配准的手术规划方法进行比较。我们显示,与基于配准的基线方法相比,术中刺激坐标作为症状减轻的阳性反应分类有所改善,AUC为0.670,而基线方法的AUC为0.627(p < 0.01)。尽管需要进一步验证,但所提出的分类框架和深度学习方法似乎非常适合改善术前规划并个性化治疗策略。

相似文献

1
Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps.
Proc SPIE Int Soc Opt Eng. 2019 Mar;10949. doi: 10.1117/12.2509728.
2
Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression.
Neuroimage Clin. 2018 Aug 14;20:580-593. doi: 10.1016/j.nicl.2018.08.020. eCollection 2018.
3
3D transcranial ultrasound as a novel intra-operative imaging technique for DBS surgery: a feasibility study.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):891-900. doi: 10.1007/s11548-015-1191-4. Epub 2015 Apr 11.
5
Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery.
Int J Comput Assist Radiol Surg. 2010 May;5(3):221-8. doi: 10.1007/s11548-009-0391-1. Epub 2009 Aug 2.
7
Connectivity derived thalamic segmentation in deep brain stimulation for tremor.
Neuroimage Clin. 2018 Jan 28;18:130-142. doi: 10.1016/j.nicl.2018.01.008. eCollection 2018.
10
Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system.
Acta Neurochir Suppl. 2007;97(Pt 2):561-7. doi: 10.1007/978-3-211-33081-4_65.

引用本文的文献

1
Deep learning in neurosurgery: a systematic literature review with a structured analysis of applications across subspecialties.
Front Neurol. 2025 Apr 16;16:1532398. doi: 10.3389/fneur.2025.1532398. eCollection 2025.
4
Prediction of Deep Brain Stimulation Outcome in Parkinson's Disease With Connectome Based on Hemispheric Asymmetry.
Front Neurosci. 2021 Oct 26;15:620750. doi: 10.3389/fnins.2021.620750. eCollection 2021.
5
Connectome-Based Model Predicts Deep Brain Stimulation Outcome in Parkinson's Disease.
Front Comput Neurosci. 2020 Oct 28;14:571527. doi: 10.3389/fncom.2020.571527. eCollection 2020.
6
Machine Learning's Application in Deep Brain Stimulation for Parkinson's Disease: A Review.
Brain Sci. 2020 Nov 1;10(11):809. doi: 10.3390/brainsci10110809.
7
Artificial intelligence for brain diseases: A systematic review.
APL Bioeng. 2020 Oct 13;4(4):041503. doi: 10.1063/5.0011697. eCollection 2020 Dec.
8
Deep Learning-Based Deep Brain Stimulation Targeting and Clinical Applications.
Front Neurosci. 2019 Oct 24;13:1128. doi: 10.3389/fnins.2019.01128. eCollection 2019.

本文引用的文献

2
Deep brain stimulation.
Interv Neurol. 2013 Sep;1(3-4):200-12. doi: 10.1159/000353121.
3
Statistical label fusion with hierarchical performance models.
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90341E. doi: 10.1117/12.2043182.
4
Note on the sampling error of the difference between correlated proportions or percentages.
Psychometrika. 1947 Jun;12(2):153-7. doi: 10.1007/BF02295996.
5
A new method for creating electrophysiological maps for DBS surgery and their application to surgical guidance.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):670-7. doi: 10.1007/978-3-540-85988-8_80.
6
Automatic target and trajectory identification for deep brain stimulation (DBS) procedures.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):483-90. doi: 10.1007/978-3-540-75757-3_59.
8
Accuracy of customized miniature stereotactic platforms.
Stereotact Funct Neurosurg. 2005;83(1):25-31. doi: 10.1159/000085023. Epub 2005 Apr 8.
9
The adaptive bases algorithm for intensity-based nonrigid image registration.
IEEE Trans Med Imaging. 2003 Nov;22(11):1470-9. doi: 10.1109/TMI.2003.819299.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验