Department of Chemistry, King's College London, London, UK.
Department of Chemistry, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
Nat Protoc. 2019 Nov;14(11):3183-3204. doi: 10.1038/s41596-019-0219-6. Epub 2019 Oct 11.
Biological membranes define the boundaries of cells and are composed primarily of phospholipids and membrane proteins. It has become increasingly evident that direct interactions of membrane proteins with their surrounding lipids play key roles in regulating both protein conformations and function. However, the exact nature and structural consequences of these interactions remain difficult to track at the molecular level. Here, we present a protocol that specifically addresses this challenge. First, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of membrane proteins incorporated into nanodiscs of controlled lipid composition is used to obtain information on the lipid species that are involved in modulating the conformational changes in the membrane protein. Then molecular dynamics (MD) simulations in lipid bilayers are used to pinpoint likely lipid-protein interactions, which can be tested experimentally using HDX-MS. By bringing together the MD predictions with the conformational readouts from HDX-MS, we have uncovered key lipid-protein interactions implicated in stabilizing important functional conformations. This protocol can be applied to virtually any integral membrane protein amenable to classic biophysical studies and for which a near-atomic-resolution structure or homology model is available. This protocol takes ~4 d to complete, excluding the time for data analysis and MD simulations, which depends on the size of the protein under investigation.
生物膜定义了细胞的边界,主要由磷脂和膜蛋白组成。越来越明显的是,膜蛋白与周围脂质的直接相互作用在调节蛋白质构象和功能方面起着关键作用。然而,这些相互作用的确切性质和结构后果仍然难以在分子水平上追踪。在这里,我们提出了一个专门解决这一挑战的方案。首先,将具有控制脂质组成的纳米盘中的膜蛋白进行氢氘交换质谱(HDX-MS)分析,以获取参与调节膜蛋白构象变化的脂质种类的信息。然后,在脂质双层中进行分子动力学(MD)模拟,以确定可能的脂质-蛋白相互作用,然后可以使用 HDX-MS 进行实验测试。通过将 MD 预测与 HDX-MS 的构象读出结果结合起来,我们揭示了稳定重要功能构象的关键脂质-蛋白相互作用。该方案几乎适用于任何可进行经典生物物理研究的整合膜蛋白,并且对于具有近原子分辨率结构或同源模型的蛋白质也适用。该方案大约需要 4 天才能完成,不包括数据分析和 MD 模拟的时间,具体取决于所研究蛋白质的大小。